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1. General Background 

In recent years, risk managers and other decision-makers responsible for loss reserving have been 

working in an information environment that is in a state of flux, but the actuarial components of this 

environment are only beginning to change. The actuarial world has been dominated by algorithmic or 

deterministic methods (i.e., results determined via defined steps from clearly stated assumptions) that 

each project a single point estimate of future liabilities from a set of existing data. These methods can 

be used with various combinations of assumptions to produce a “range of reasonable estimates” from 

which the actuary would judgmentally select the “best” estimate. 

There is something beguiling about a range of estimates; especially one purported to be reasonable. 

But as every actuary knows, determining “reasonability” is ultimately a subjective process. It is 

influenced by a host of non-scientific but significant factors that, in their totality, define the specific 

business culture of any particular loss reserving process. Unfortunately, no range of estimates can 

account for every possible outcome. Indeed, these point estimates are each designed to reflect a 

central estimate of the possible outcomes and constitute the search for the pattern which leads to the 

“best central estimate.” 

In order to create a clearer statistical picture of the loss reserving process, actuaries have been turning 

to mathematical or stochastic models to capture the organic nature of real world loss information. As 

organizations begin to add stochastic models to their traditional approaches, corporate decision-

makers will find that they have significantly more information regarding the unpaid claim liability 

estimates. For example, a traditional deterministic point estimate provides no information as to the 

risk that the ultimate result might eventually exceed the estimate. On the other hand, a stochastic-

based estimate can provide a wealth of statistical information, or risk profile, about the unpaid claim 

liabilities (e.g., the 75th percentile, which is a reserve level at which there is a 25% chance that future 

payments might ultimately exceed the reserve). 

 

 

To be sure, the range of reasonable estimates produced by deterministic methods is still important. 

But the overriding task in the information-rich stochastic environment is to develop a model that 

captures the statistical features of the underlying data, and to search for “the models” which lead to a 

best estimate of “all” possible outcomes. 

For example, one kind of stochastic model, the bootstrap, demonstrates the strengths, adaptability 

and utility of this approach. Bootstrapping originated with statisticians and is not new, nor unique to 

insurance. It is a tried and true model that looks to the dynamic nature of the data as the basis for 

simulations that generate a realistic distribution of possible outcomes. With respect to unpaid claim 

Graph 1-1: 

Ranges vs. Distributions 
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liability estimates, bootstrapping provides an estimated risk profile for a specific claims portfolio. It also 

provides important information for many other uses beyond just setting reserves (e.g., capital and 

return requirements, impact of diversification, evaluation of business strategies, etc.). 

Like all models and methods, bootstrapping depends on the quality of the assumptions upon which it is 

based. Indeed, the actuarial judgments required in the deterministic world are no less important in the 

stochastic world  Instead, the nature of these judgments are likely to change and, in some ways, may 

become a more important part of the process. Unlike traditional deterministic methods, however, 

which typically do not employ statistical tests to validate their overall reasonableness, the bootstrap 

model is open to a variety of diagnostic tools to help judge its underlying assumptions and to adjust its 

parameters to more realistically model the data at hand. 

In summary, the information-rich environment created by stochastic modeling also helps the corporate 

decision-maker account for the needs of important audiences whose concerns drive the loss reserving 

process—regulators and rating agencies concerned with solvency, shareholders and investors 

concerned with investment return, and Board members concerned with making the best decision 

possible about the use of capital, and all parties concerned with better understanding the uncertain 

nature of unpaid claim liabilities. Different though their motives and goals may be, they can all be 

placed into a quantitative framework in order to better gauge risk using the power of stochastic 

analysis.1 

METHODS VS. MODELS 

A 2005 research paper by the Casualty Actuarial Society2 defines two general categories of techniques 

for estimating unpaid claims3 as follows: 

Method:  A systematic procedure for estimating future payments for loss and allocated loss adjustment 

expense. Methods are algorithms or series of steps followed to determine an estimate. 

Model:  A mathematical or empirical representation of how losses and allocated loss adjustment 

expenses emerge and develop. The model accounts for known and inferred properties and is used to 

project future emergence and development.  

Using these definitions, the primary feature that distinguishes a model from a method is that a model 

can be used to estimate a “distribution of possible outcomes” whereas a method will only produce a 

single point estimate. In practice, a variety of assumptions and methods are typically used to generate 

a “range” of point estimates. 

A variety of loss estimation models4 have been developed in recent years, though bootstrap and 

maximum likelihood models like the ones implemented in this system fall into the more sophisticated 

end of the spectrum. For example, while a bootstrap tool is based on a widely used and 

straightforward method (the link ratio method), it uses simulation techniques and statistical 

 

1 Shapland, Mark R., “Risk Management Frontiers: The Quest for More Reserve Information”, Risk Management Magazine, June 2007, 
pp. 38-42. 

2 CAS Working Party on Quantifying Variability in Reserve Estimates, “The Analysis and Estimation of Loss & ALAE Variability: A Summary 
Report”, 2005 CAS Fall Forum, pp. 29-146. Hereafter referred to as the “Reserve Variability Report.” 

3 The term “loss” in this document is intended to include both loss and allocated loss adjustment expenses, unless noted otherwise. The 
Working Party research paper uses the more generic term “future payments.” 

4 As a point of clarification, some methods can be “turned into” models and methods can be thought of as simplified models. For 
example, the Thomas Mack model can be viewed as an “extension” of the standard chain ladder method in the sense that it calculates 
statistics which can be used to “add” a distribution to the chain ladder estimate. 
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information derived from the data to generate a robust estimate of a distribution of possible 

outcomes. 

For both methods and models, the term “reserve” can also add to the confusion as it is commonly used 

to refer to both the estimated unpaid claims and the provision booked in the financial statements. In 

this manual we will restrict the use of the term “reserve” to the value used for financial reporting 

purposes. We will use the term “unpaid claim estimates" to refer to the actuarial evaluation of the 

value of these liabilities. 

RANGES VS. DISTRIBUTIONS 

Frequently, a casualty actuary will use either a range or distribution as an expression of the degree of 

uncertainty in the unpaid claim estimate. The approach used to develop a range or distribution of 

unpaid claim estimates may vary, and may even be dictated by the user’s intended purpose, or by the 

perspective of the actuary. A major distinction between a range and a distribution is that a “range” is 

generally considered to be either a set of point estimates or a subset of the possible outcomes 

whereas a “distribution” generally describes “all” possible outcomes.5  

Another distinction is that if point estimates are used to determine the “range” then the statistical 

meaning of the points cannot readily be determined—e.g., we do not know if they represent a mean, 

median, or mode estimate6—whereas a “distribution” does have statistical meaning, e.g., the mean, 

median, mode, percentiles, and confidence intervals can be determined. 

In order to bridge the gap between a traditional deterministic analysis and a stochastic analysis, we can 

use the term central estimate to mean a point estimate that is intended to convey a measure of 

central tendency rather than a deliberately “high” or “low” estimate – i.e., a central estimate is part of 

a subset of potential point estimates. In a deterministic analysis, the actuary would typically use a 

weighted average of a range of reasonable estimates7 to determine their “best estimate.” This is 

illustrated in Graph 1-2.  

 

 

5  While a purely statistical distribution will include all possible outcomes as defined by that distribution, the estimation of unpaid claims 
involves significant uncertainties that cannot be completely estimated. Thus, “all” should be thought of as a reasonable estimate of a 
distribution to the extent that it can be estimated using historical data (for example, “all” might not account for a potential catastrophe 
that has never occurred in the historical data being modeled). 

6 Indeed, in Appendix 3, page 22, of Actuarial Standard of Practice No. 43, Property/Casualty Unpaid Claim Estimates, the subcommittee 
noted that “most traditional actuarial methods are meant to produce some measure of central tendency. But what measure? There are 
several different measures of central tendency, including (for example) mean, median, mode, and truncated mean. The subcommittee 
believed that ‘mean’ best represented the central tendency measure implicitly underlying most traditional actuarial methods, even if 
such traditional methods are not statistical in nature.” 

7 A “range of central estimates” is analogous to a “range of reasonable estimates” as defined in Actuarial Standard of Practice No. 36. 

Graph 1-2: 

Range of Reasonable 
Estimates & Best Estimate 
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In order to express more of the uncertainty of the “best estimate”, one alternative is to expand the 

range of reasonable estimates to include other point estimates. For example, the actuary could include 

point estimates in which the average age-to-age ratios are deliberately higher and/or lower than 

expected in order to show deliberately higher and/or lower point estimates. In contrast to a range of 

reasonable estimates, a range of possible estimates is intended to show a wider range than what is 

used to determine the best estimate. However, note that the width of both of these ranges are 

subjective based on the judgment of the actuary and neither can be used to convey statistical 

information. These ranges are illustrated in Graph 1-3.  

 
 

Another distinction between a range and a distribution is that the incremental values projected in a 

point estimate will essentially have the random movements “averaged” or “smoothed” out, whereas 

the incremental values in a possible outcome will include random movements. This is an important 

distinction since a point estimate (in part or in total) may not be a possible outcome even though it still 

has a valid meaning for accounting purposes. For example, for the roll of a fair die the possible 

outcomes are 1, 2, 3, 4, 5 and 6 but the central estimate is 3.5, which is not one of the possible 

outcomes. The central estimate of 3.5 is an appropriate estimate for most accounting purposes,8 even 

though it is not a possible outcome, whereas the possible outcomes convey statistical information 

about the risk of the central estimate being redundant or deficient. 

Another common process for describing the uncertainty of the central estimate is to “add” statistical 

information to the central estimate. For example, the standard Thomas Mack approach can be used to 

calculate the standard deviation of the unpaid claims by accident year and for all years combined. 

Using the standard deviation and an assumed distribution, the actuary can then calculate statistical 

values corresponding to a distribution around the central estimate. This is illustrated in Graph 1-4.  

 

8 Since the possible outcomes are symmetric, the central estimate is also the mean and median values in this example. Some accounting 
principles describe using the mode (the most likely outcome), but six different modes is not realistic when compared to insurance 
liabilities. Discounting and other Fair Value accounting rules would modify this example, but they are ignored here for simplicity. 

Graph 1-3: 

Range of Reasonable 
Estimates vs. Range of 
Possible Estimates 
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A distribution of statistical outcomes can be defined as a distribution based on a central estimate, 

standard deviation and a statistical distribution. This is an “improvement” over a range of central 

estimates in the sense that statistical information (e.g., percentiles, confidence intervals, etc.) can be 

determined, but the central estimate is assumed to be the mean of the distribution and implied points 

of the distribution may or may not be possible outcomes. In contrast, a distribution of possible 

outcomes can be defined as a distribution in which each of the points in the distribution is based on 

incremental values that are all random and statistically possible. This transition to a model that 

produces a distribution of possible outcomes does not imply that we should only be concerned with 

finding the one “best” model. Indeed, since all models use simplifying assumptions no one model will 

always produce the “best” distribution any more than any one method will always produce the “best” 

central estimate.  

In many ways, the use of various models is analogous to the use of a variety of methods to develop a 

range of central estimates. As part of the analysis of various methods, actuaries explicitly and implicitly 

use diagnostic tools to evaluate the results of each method in order to determine if the point estimate 

from each specific method (and its assumptions) is reasonable. For example, ratios of incurred to paid 

claims can show any trends in the adequacy of case reserves over time which would inform the 

actuarial judgment with respect to the paid and incurred chain ladder methods. As another example, 

reviewing the accident year data and age-to-age factors informs judgment about the quality of the 

estimate for each year and whether the overall estimate from a particular method is reasonable. 

 

Graph 1-4: 

Distribution of Statistical 
Outcomes 
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Similarly, in addition to the “deterministic” diagnostic tools actuaries are generally familiar with, a 

variety of statistically based diagnostic tools are available to determine if a model is reasonable.9 For 

example, the statistically based diagnostic tests, described more completely in Section 5 and Appendix 

B, can be used to adjust model assumptions to match the statistical features of the data and to review 

the statistical quality of the model results. This process will result in a reasonable distribution from 

each reasonable model.10 Graph 1-5 illustrates a variety of reasonable distributions from different 

reasonable models. Just like for methods, no one model is definitive so different models can be used to 

illustrate the uncertainty of a particular estimate (e.g., the means in this illustration).11 

Similar to the process used to weight different reasonable point estimates, it is possible to credibility 

weight the reasonable distributions in order to derive a “best estimate of the distribution,” as 

illustrated in Graph 1-6. From the “best estimate of the distribution” it is then possible to determine 

the “best” estimate of the mode, median, and mean. Comparing Graphs 1-5 and 1-6, you can see the 

link between statistically based ranges and a resulting weighted “best distribution.” Adding Graph 1-2 

to the comparison, you can also contrast a deterministic range with a statistically based range. 

 

 

9  See Sections 3-3.1, pp. 43-51, of the Reserve Variability Report for a discussion of twenty criteria, or diagnostic tests, for evaluating the 
reasonability of a model. See Section 5 and Appendix B of this manual for the diagnostics used in the Milliman model. 

10 This also assumes that models deemed not to be reasonable have been removed. 

11 As a point of clarification, we could also compare a “range of mode estimates” or a “range of median estimates” to the deterministic 
“range of central estimates.” 

Graph 1-5: 

Reasonable Distributions of 
Possible Outcomes 
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THE EFFECTS OF CORRELATION AMONG LINES 

Just as distributions can provide more information to your analysis of a particular line of business, they 

can also provide additional help when you summarize your analysis of several different lines. 

You know from experience that different types of insurance tend to react to market stimuli in different 

ways. If two lines of business, say, Auto BI and Auto PD, both typically tend to behave similarly to 

market conditions, they are said to be “positively correlated.” (The opposite could also be true, 

resulting in “negatively correlated” lines.) Stated another way, if the two lines are positively correlated, 

and Auto BI produced higher than expected losses, we would anticipate Auto PD to also produce 

higher than expected results. 

How does this relate to distributions? You could summarize results to arrive at an aggregate mean by 

summing the means of the individual lines. But if you want an aggregate distribution, you need to 

factor in the effects of this correlation into your calculation. For a simple example, if two lines are less 

than 100% correlated, you would probably need less total reserves at the 75% level than the sum of 

the two lines’ individual 75% levels, due to their propensity to not go “bad” at the same time. Arius 

provides extensive capabilities to measure and account for this potential correlation effect among 

multiple lines of business. Appendix C provides additional details about this subject. 

 

  

Graph 1-6: 

Best Estimate of a 
Distribution 
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2. What is a Bootstrap Model? 

A LITTLE HISTORY 

The term “bootstrapping” originates in German literature, from legends about Baron von 

Münchhausen, who was known for the often unbelievable tales he told of his fantastic adventures. 

Supposedly he could lift himself out of a swamp or quicksand by pulling himself up by his own hair. In 

later versions of similar tales, he pulled himself out of the sea by pulling up on his bootstraps, thus 

forming the basis for the term bootstrapping. 

The term has taken on broad application in many fields of study, including physics, biology and medical 

research, computer science, and statistics. Though ultimately having grown to mean different things in 

each of the above applications, they generally start from the premise of using simple information, and 

building it bit by bit into more complex systems, often using only one’s own data to estimate or project 

more complex information about that data (like the Baron, who needed nothing more than what he 

already had to pull himself out of the sea). 

AN UNPAID CLAIM ESTIMATION MODEL 

Bradley Efron, chairman of the Department of Statistics at Stanford University, is credited with 

expanding the concept of the bootstrap estimate into the realm of statistics. In his work, "bootstrap" 

means that one available sample gives rise to many others by re-sampling the existing data (not unlike 

pulling yourself up by your own bootstrap). He suggests duplicating the original sample as many times 

as computing resources will allow, and then treating this expanded sample as a virtual population. 

Then samples are drawn with replacement from this population to verify the estimators. 

Several writers in actuarial literature have applied this concept to the process of loss reserving. The 

most commonly-cited examples are from England and Verrall (1999 and 2002), Pinheiro, et al. (2001 

and 2003), and Kirschner, et al. (2002). In its simplest form, they suggested using a basic chain ladder 

technique to square a triangle of paid losses, repeating that randomly and stochastically a large 

number of times, and then evaluating the distribution of the outcomes. The model generates a 

distribution of possible outcomes, rather than the chain ladder’s typical point estimate, thus providing 

more information about the potential results. Assuming the users understand the data, and how well 

the data fits the model, they can draw more effective inferences, given the resulting mean, standard 

deviation and various percentiles available. 

STRENGTHS OF THE BOOTSTRAP APPROACH 

A primary advantage to using a bootstrap model (or any of Arius’ stochastic models) is to estimate the 

distribution of possible outcomes, which in turn provides information about the “riskiness” of the 

portfolio of claims. For example, without an estimated distribution it is virtually impossible to directly 

estimate the amount of capital required12 or how likely it is that the ultimate value of the claims will 

exceed a certain amount. 

Another advantage of a bootstrap model is that it involves aggregate loss triangles of both paid and 

incurred losses and volume-weighted age-to-age factors (i.e., the chain ladder method), which should 

 

12 Without an estimated distribution, required capital could be “estimated” using industry benchmark ratios or other rules of thumb, but 
these do not directly account for the specific risk profile under review. 
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be familiar to most people.13 The use of aggregate triangle data means that the required data should 

be readily available in most cases and perhaps even readily tie to published financial statements. 

While the bootstrap model has components that are commonly known and understood, it also has 

components that are sophisticated enough to produce a robust estimate of the distribution of possible 

outcomes. Even for users with a modest mathematical background, the sophisticated components are 

straightforward and easy to learn. 

Because the framework of the bootstrap model is based on the chain ladder method, other methods 

can also be used with a bootstrap model, thus giving us multiple models we can credibility-weight into 

a more robust distribution than we could derive with only one model. In the Milliman model, the user 

can model using both paid and incurred data models based on the chain ladder, Bornhuetter-Ferguson, 

and Cape Cod methods, for a total of six different models. The basic mechanics of these models are 

illustrated in Section 3 and Appendix A. 

Another advantage of a bootstrap model is that it can be specifically “tailored” to the statistical 

features found in the data under analysis. This is particularly important as the results of any simulation 

model are only as good as the model used in the simulation process. If the model does not “fit” the 

data then the results of the simulation may not be a very good estimate of the distribution of possible 

outcomes. 

A final advantage of a bootstrap model is that it can reflect the fact that insurance loss distributions are 

generally “skewed to the right.” Rather than the generally recognized normal distribution (which is 

often used as a simplifying assumption in other models), wherein the outcome is equally likely to be 

higher or lower than expected, in a right skewed distribution the higher end possibilities are further 

away from the average compared to the lower end – i.e., when an outcome is better than expected, 

there is a limit on how good it could be, but when an outcome is worse than expected the degree to 

which the outcome can be worse can be much greater. These two different types of distribution are 

illustrated in the Graph 2-1. 

 

 

 

 

13 The volume-weighted age-to-age factors are derived from a Generalized Linear Model (GLM), but understanding the theoretical 
background is not a prerequisite for using the factors. 

Graph 2-1: 

Comparison of Symmetric 
and Skewed Distributions 
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This “distributional effect” is greatly influenced by the presence of (or lack of) large claims and large 

reinsurance recoveries, among other things, which can be generally reflected in a bootstrap model. 

BOOTSTRAP MODEL+ SHORTCOMINGS 

Like all models and methods, the quality of a bootstrap model depends on the quality of the 

assumptions. A number of diagnostics are available to help evaluate how well a model fixes a particular 

data set (or vice versa). We will elaborate on some of the important model diagnostics in Section 5 and 

Appendix C. 

Another aspect of bootstrap models that could be considered a disadvantage is that they are more 

complex than standard methods and thus more time consuming to create. However, once a flexible 

model has been developed, as Milliman has done, they can be used as efficiently as most standard 

methods. 

A corollary to this is that at first bootstrap models can appear more difficult to explain and understand. 

In part, this could be due to more widespread use of standard methods compared to the newer 

bootstrap models, but we will endeavor to lay out the process used by the Milliman models in order to 

assist with understanding. 

Another potential weakness of a bootstrap model is the limited number of data points used to 

parameterize the model (e.g., 53 in a typical 10 x 10 triangle). This makes it hard to determine whether 

the most extreme observation is a one-in-100 or a one-in-1,000 event (or simply, in this example, a 

one-in-53 event). Of course, the nature of the extreme observations in the data will also affect the 

level of the extreme simulations in the results. In order to overcome this potential weakness, other 

sampling options are included in the Milliman model so that the sampling process is not limited to the 

available data. 

SOLVENCY USING THE BOOTSTRAP APPROACH 

An emerging area of use for the bootstrap model is for solvency regulation. In Europe the new 

Solvency II regime is requiring risk bearing entities to calculate reserve risk and Solvency Capital 

Requirements (SCR) on a “one-year time horizon” basis. The concept behind this one-year time horizon 

is to project new results based on different scenarios after one year of time after the current financial 

reporting period. Since the bootstrap model projects results incrementally into the future, it is ideally 

suited to effectively recalculate future estimates of unpaid claims associated with each outcome of 

simulated results after one year. 

In addition to the SCR, the new technical provisions in Europe require a risk margin calculated based on 

the runoff of the SCR over time. Accordingly, we have included new methods of using the bootstrap 

models to not only simulate on a one year time horizon, but an N-year horizon so that the users can 

effectively “run-off” the implied capital (or SCR) at the one year time horizon. 
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3. Overview: How the Simulation Models Work 

A BASIC ODP BOOTSTRAP PAID LOSS CHAIN LADDER SIMULATION 

For purposes of providing a simple review of the algorithm’s steps, we will follow the most basic form, 

a simulation of possible future outcomes based on the paid loss triangle and the basic chain ladder 

approach. 

With random sampling from a triangle of residuals (i.e., the model error terms), the model simulates a 

large number of “sample” triangles, uses the chain ladder model to estimate the future payment 

triangles (lower right), including the random nature of those payments, and then calculates a 

distribution from the many possible outcomes of future payments.  

In very simple terms, the model performs the following steps (of course, the reality is a bit more 

complex): 

1. Use a triangle of cumulative paid losses as input. Calculate the average age-to-age development 

factors. (Initially we’re using the chain ladder model with volume weighted averages.) 

2. Calculate a new triangle of “fitted values” – i.e., use the average age-to-age factors to 

“undevelop” each value in the latest diagonal to form a new triangle of values predicted by the 

model assumptions. 

3. Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are called “unscaled Pearson residuals” in the 

model. 

4. Standardize the residuals so that they are independent and identically distributed (i.i.d.) and 

calculate the scale parameter (used for the process variance in Step 7). 

5. Create a new incremental sample triangle by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals.14 

6. Develop and square that sample triangle, adding tail factors, and estimating ultimate losses. 

7. Add process variance to the future incremental values from Step 6 (which will change the 

“estimated ultimate” to a “possible outcome”). 

8. Calculate the total future payments (estimated unpaid amounts) for each year and in total for this 

iteration of the model. 

9. Repeat the random selection, new triangle creation, and resulting unpaid calculations in Steps 5 

through 8, X times. 

The result from the X simulations is an estimate of a distribution of possible outcomes. From this we 

can calculate the mean, standard deviation, percentiles, etc. 

Appendix A has a numerical example of the Paid Chain Ladder simulation model process, as well as the 

other models, described in Section 3. 

 

14 Other options for simulating the sample triangle include simulating the residuals form a normal distribution or using the fitted 
incremental values as the mean of a normal, lognormal or gamma distribution (similar to adding process variance in Step 8). 
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A BASIC ODP BOOTSTRAP INCURRED LOSS CHAIN LADDER SIMULATION 

We can also use incurred loss data and follow the same steps as outlined above for paid data. When 

paid data is used, the resulting distribution is for total unpaid amounts since we are estimating the 

difference between the ultimate payments and the payments to date. However, when incurred data is 

used (with the same algorithm) the resulting distribution is for the total incurred but not reported 

(IBNR) amount because we are estimating the difference between the ultimate values and the incurred 

to date. 

In order to make apples-to-apples comparisons of each distribution of unpaid claims, as opposed to 

IBNR, the Milliman incurred model includes an additional step to convert the squared triangle of 

incremental incurred amounts to a squared triangle of incremental paid amounts. 

So why not just add the case reserves to the distribution of IBNR to get a distribution of total unpaid 

claims that will match the paid method? This would indeed result in a distribution of total unpaid 

claims, but it would not be a consistent comparison since there would be no variation in the case 

reserve portion of the distribution. By using the steps outlined below for the incurred data, the 

simulated sample triangles will include variations in the case reserves which results in a complete 

apples-to-apples comparison of the unpaid claims. 

In very simple terms, the model performs the following steps: 

1. Use a triangle of cumulative incurred losses as input. Calculate the average age-to-age 

development factors. (Initially we’re using the chain ladder model with volume weighted 

averages.) 

2. Calculate a new triangle of “fitted values” – i.e., use the average age-to-age factors to 

“undevelop” each value in the latest diagonal to form a new triangle of values predicted by the 

model assumptions. 

3. Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are the “unscaled Pearson residuals.”  

4. Standardize the residuals so that they are (i.i.d.) and calculate the scale parameter (used for the 

process variance in Step 7). 

5. Create a new incremental sample triangle by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals.15 

6. Develop and square that sample triangle, adding tail factors, and estimating ultimate losses. 

7. Add process variance to the future incremental values from Step 6 (which will change the 

estimated ultimate) and calculate the ultimate value for each year estimated by this iteration of 

the model. 

8. Simulate in parallel using paid losses (Steps 1 to 7). Adjust the simulated incremental paid losses 

so that the total ultimate value for each accident year matches the total ultimate value for the 

incurred losses in Step 7 (which adjusts the incurred ultimate to a random paid pattern). 

9. Calculate the total future payments (estimated unpaid amounts) for each year and in total for this 

iteration of the model, using the paid losses after they are adjusted to match the ultimate 

incurred amounts. 

 

15 The same options for simulating a sample triangle with paid loss data also apply to incurred loss data. 

Note: 

The paid and incurred 
calculations are identical 
through Step 7. 

Note: 

Since the ultimate values 
are the same, the loss ratio 
distribution will still be 
based on the incurred 
data. 
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10. Repeat the random selection, new triangle creation, and resulting adjusted unpaid calculations in 

Steps 5 through 9 X times. 

The result from the X simulations is an estimate of the distribution of possible outcomes. From this we 

can calculate the mean, standard deviation, percentiles, etc. 

A BASIC ODP BOOTSTRAP BORNHUETTER-FERGUSON SIMULATION 

We have extended both the paid and incurred chain ladder models by incorporating the Bornhuetter-

Ferguson (BF) method into the model steps. The BF bootstrap model requires an additional set of 

parameters for the ultimate losses (i.e., the mean or a priori) per year. Optional parameters for the BF 

model include: 

 Ultimate Premiums (to express the ultimate losses as a loss ratio); or 

 Ultimate Exposures (to express the ultimate losses as a pure premium); and 

 Coefficient of variation of the a priori ultimate losses (to add uncertainty to the ultimate loss 

parameters). 

Replacing Step 6 of the basic chain ladder model, the ultimate loss will be calculated using the BF 

method. Using the paid BF with premiums as an example: 

Ultimate Loss = Paid to date + (1 – %Paid) x Ultimate Premium x Loss Ratio 

The loss ratio is simulated from the distribution you selected if you want to include uncertainty in the 

ultimate. The paid-to-date has been simulated in Step 5. The BF method gives the total remaining 

unpaid amount for that year. 

The total unpaid needs to be divided into incremental losses. This can be done in two different ways.  

 Deterministic Option: Use the age-to-age factors to determine the proportion that should fall 

in each incremental period; or 

 Statistical Option: Using a Bayesian weighting of the column sums and row sums to 

determine the proportion that should fall in each incremental period.16 

After this step, we can proceed to Step 7 of the normal chain ladder model, where we add process 

variance to the future incremental values. 

The incurred BF model uses the same extra step to convert the total IBNR to total unpaid like the 

incurred chain ladder model, except that it will use a parallel paid BF model instead of a paid chain 

ladder model in Step 8 and the simulated loss ratios used in the incurred BF model will also be used in 

the parallel paid BF model.17 Keeping with the simplicity theme, we only illustrate the paid BF model in 

Appendix A. 

 

16 The Statistical option is based on “Verrall, Richard J. 2004. A Bayesian Generalized Linear Model for the Bornhuetter-Ferguson Method 
of Claims Reserving. North American Actuarial Journal, Vol. 8-3. p. 67-89.” This option can be a useful alternative when the 
development pattern is not stable. 

17 The paid BF model uses the same loss ratio assumptions (e.g., a priori and CoV) as the incurred BF model, but loss ratios for each 
iteration are simulated independently. Only for the paid BF used as part of the incurred model are the same simulated loss ratios used. 
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A BASIC ODP BOOTSTRAP CAPE COD SIMULATION 

Similarly, we have extended both the paid and incurred chain ladder models by incorporating the Cape 

Cod method into the model steps. The Cape Cod bootstrap model requires these additional 

parameters: 

 Premium index factors (to adjust ultimate premiums to current rate level); 

 Loss trends (to adjust for loss cost inflation); 

 Weights (to mark which periods to include in the loss ratio weighted average); and 

 Decay rate (to systematically reduce the weight given to each year the further each year is 

from the year being calculated). 

Step 6 of the basic chain ladder model will use the Cape Cod method to calculate the ultimate loss. The 

advantage of the Cape Cod over the Bornhuetter-Ferguson is that the uncertainty of the ultimate 

values can be based on the stochastic iterations instead of an input variable. 

The calculation of the incremental values for the next step can be done using the same two options 

(i.e., the “Deterministic” and “Statistical” options) as the BF model. 

After this step, we can proceed to Step 7 of the normal chain ladder model, where we add process 

variance to the future incremental values. 

The incurred Cape Cod model uses the same extra step to convert the total IBNR to total unpaid as the 

incurred chain ladder model, except that it will use a parallel paid Cape Cod model instead of a paid 

chain ladder model in Step 8. Keeping with the simplicity theme, we will illustrate only the paid Cape 

Cod model in Appendix A. 

USING THE ODP PROCESS ALGORITHM18 

A Paid Loss Chain Ladder Simulation  

For purposes of providing a simple review of the OPD Process algorithm’s steps for calculating risk on 

an N-Year time horizon, we will follow the most basic form, a simulation of possible future outcomes 

based on the paid loss triangle and the chain ladder approach. 

In very simple terms, the model performs the following steps, many of which are consistent with the 

ODP Bootstrap basic chain ladder simulation noted earlier: 

1. Use a triangle of cumulative paid losses as input. Calculate the average age-to-age development 

factors (using volume weighted averages). 

2. Calculate a new triangle of “fitted values” – i.e., use the average age-to-age factors to 

“undevelop” each value in the latest diagonal to form a new triangle of values predicted by the 

model assumptions. 

3. Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are called “unscaled Pearson residuals” in the 

model. 

 

18 The ODP Process Algorithm could alternatively be called the Wüthrich & Merz algorithm. 
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4. Standardize the residuals so that they are independent and identically distributed (i.i.d.) and 

calculate the scale parameter (used for the process variance in Step 7). 

5. Create a new incremental sample triangle by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals.19 

6. Develop and square that sample triangle, adding tail factors, and estimating ultimate losses. 

7. Add process variance to the future incremental values from Step 6 (which will change the 

estimated ultimate to a possible outcome). 

8. Use the original data triangle and the first N future diagonals to recalculate the age-to-age factors 

up to the Nth diagonal and use these factors project the remaining expected unpaid. 

9. Calculate the total N year future payments and remaining point estimate for each year and in total 

for this iteration of the model. 

10. Repeat the random selection, new triangle creation, and resulting unpaid calculations in Steps 5 

through 9, X times. 

The result from the X simulations is an estimate of a distribution of possible outcomes for the first N 

diagonals and point estimates beyond the N diagonals. From this we can calculate the mean, standard 

deviation, percentiles, etc. To calculate the Claim Development Result, the average from the basic ODP 

Bootstrap model is subtracted from each iteration of this model. It is important to note that for this 

algorithm the first N diagonals will be identical to the results for the basic paid chain ladder algorithm. 

An Incurred Loss Chain Ladder Simulation 

In very simple terms, the model performs the following steps, many of which are consistent with the 

basic incurred chain ladder noted earlier: 

1. Use a triangle of cumulative incurred losses as input. Calculate the average age-to-age 

development factors (using volume weighted averages). 

2. Calculate a new triangle of “fitted values” – i.e., use the average age-to-age factors to 

“undevelop” each value in the latest diagonal to form a new triangle of values predicted by the 

model assumptions. 

3. Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are the “unscaled Pearson residuals.”  

4. Standardize the residuals so that they are (i.i.d.) and calculate the scale parameter (used for the 

process variance in Step 7). 

5. Create a new incremental sample triangle by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals. 

6. Develop and square that sample triangle, adding tail factors, and estimating ultimate losses. 

7. Add process variance to the future incremental values from Step 6 (which will change the 

estimated ultimate) and calculate the ultimate value for each year estimated by this iteration of 

the model. 

 

19 Other options for simulating the sample triangle also still apply. 

Note: 

The paid and incurred 
calculations are identical 
through Step 7. 
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8. Simulate in parallel using paid losses (Steps 1 to 7). Adjust the simulated incremental paid losses 

so that the total ultimate value for each accident year matches the total ultimate value for the 

incurred losses in Step 7 (which adjusts the incurred ultimate to a random paid pattern). 

9. Use the original incurred data triangle and the first N future incurred diagonals to recalculate the 

age-to-age factors up to the Nth diagonal and use these factors project the remaining expected 

IBNR. 

10. Use the original paid data triangle and the first N future paid diagonals to recalculate the age-to-

age factors up to the Nth diagonal and use these factors to project the remaining expected unpaid 

for the parallel paid loss portion of the incurred model. 

11. Use the original paid triangle and the adjusted incremental paid from Step 8 for the first N 

diagonals only. Calculate the difference between the “ultimate” incurred values by year in Step 9 

and the cumulative paid values up to the Nth future diagonal in Step 11, and then allocate this 

remaining expected incurred unpaid to the remaining future incremental values using the 

remaining expected paid pattern from Step 10 (which adjusts the remaining incurred ultimate to 

an expected payment pattern). 

12. Repeat the random selection, new triangle creation, and resulting adjusted unpaid calculations in 

Steps 5 through 11 X times. 

The result from the X simulations is an estimate of the distribution of possible outcomes for the first N 

diagonals and point estimates beyond the N diagonals. From this we can calculate the mean, standard 

deviation, percentiles, etc. To calculate the Claim Development Result, the average from the basic ODP 

Bootstrap model is subtracted from each iteration of this model. It is important to note that for this 

algorithm the first N diagonals will be identical to the results for the basic incurred chain ladder 

algorithm. 

A Bornhuetter-Ferguson Simulation 

The adjustments for the paid and incurred Bornhuetter-Ferguson (BF) methods for the ODP Process 

algorithm are similar to the adjustments to the basic chain ladder methods. The BF bootstrap model 

requires an additional set of parameters for the ultimate losses (i.e., the mean or a priori) per year, as 

noted above.  

Replacing Step 6 of the basic chain ladder model, the ultimate loss will be calculated using the BF 

method. The paid-to-date has been simulated in Step 5. The BF method gives the total remaining 

unpaid amount by year, as noted above. To maintain internal consistency, the sampled a priori loss 

ratios by year used for the basic BF model are also used for the ODP Process algorithm without 

resampling them. 

The total unpaid needs to be divided into incremental losses. For the ODP Process algorithm, only the 

Deterministic Option noted above can be used. After this step, we can proceed to Step 7 of the basic 

chain ladder model, where we add process variance to the future incremental values. Step 8 of the 

paid ODP Process algorithm also uses the same sampled a priori ratios to estimate the remaining 

unpaid, again without resampling. 

The incurred BF model uses the same extra step to convert the total IBNR to total unpaid like the 

incurred chain ladder model, except that it will use a parallel paid BF model instead of a paid chain 

ladder model in Step 8 and the simulated loss ratios used in the incurred BF model will also be used in 
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the parallel paid BF model.20  It is important to note that for these algorithms the first N diagonals will 

be identical to the results for the basic paid and incurred BF algorithms, respectively. Keeping with the 

simplicity theme, we only illustrate the paid BF model in Appendix A. 

A Cape Cod Simulation 

Similarly, we have extended both the paid and incurred chain ladder models by incorporating the Cape 

Cod method into the model steps. The Cape Cod bootstrap model requires these additional 

parameters, as noted above. 

Step 6 of the basic chain ladder model will use the Cape Cod method to calculate the ultimate loss. The 

calculation of the incremental values for the next step can only be done using the Deterministic option 

for the ODP Process algorithm. 

After this step, we can proceed to Step 7 of the normal chain ladder model, where we add process 

variance to the future incremental values.  

The incurred Cape Cod model uses the same extra step to convert the total IBNR to total unpaid as the 

incurred chain ladder model, except that it will use a parallel paid Cape Cod model instead of a paid 

chain ladder model in Step 8. It is important to note that for these algorithms the first N diagonals will 

be identical to the results for the basic paid and incurred CC algorithms, respectively. Keeping with the 

simplicity theme, we will illustrate only the paid Cape Cod model in Appendix A. 

USING THE ODP RESIDUAL ALGORITHM21 

A Paid Loss Chain Ladder Simulation 

For purposes of providing a simple review of the OPD Residual algorithm’s steps for calculating risk on 

an N-Year time horizon, we will follow the most basic form, a simulation of possible future outcomes 

based on the paid loss triangle and the basic chain ladder approach. 

In very simple terms, the model performs the following steps, many of which are consistent with the 

ODP Bootstrap basic chain ladder simulation noted earlier: 

1. Use a triangle of cumulative paid losses as input. Calculate the average age-to-age development 

factors (using volume weighted averages). 

2. Calculate a new triangle of “fitted values” – i.e., use the average age-to-age factors to 

“undevelop” each value in the latest diagonal to form a new triangle of values predicted by the 

model assumptions. 

3. Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are called “unscaled Pearson residuals” in the 

model. 

4. Standardize the residuals so that they are independent and identically distributed (i.i.d.). 

 

20 The paid BF model uses the same loss ratio assumptions (e.g., a priori and CoV) as the incurred BF model, but loss ratios for each 
iteration are simulated independently. Only for the paid BF used as part of the incurred model are the same simulated loss ratios used. 

21 The “Residual” (or “Recursive”) approach to simulating based on a one-year time horizon is described by Alexandre Boumezoued et al. 
in “One-year Reserve Risk Including a Tail Factor: Closed Formula and Bootstrap Approaches,” 2012. See Help | Technical References 
for the compete paper. 
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5. Create a new incremental sample trapezoid by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals and using the age-to-age factors from Step 1 to 

determine the future fitted values. 

6. Develop and square that sample trapezoid, adding tail factors, and estimating ultimate losses. 

7. Sum the future incremental values from Step 6 (which is a possible outcome for the N-Year time 

horizon and expected values for the remaining future periods). 

8. Repeat the random selection, new trapezoid creation, and resulting unpaid calculations in Steps 5 

through 7, X times. 

The result from the X simulations is an estimate of a distribution of possible outcomes for the first N 

diagonals and point estimates beyond the N diagonals. From this we can calculate the mean, standard 

deviation, percentiles, etc. To calculate the Claim Development Result, the average from the basic ODP 

Bootstrap model is subtracted from each iteration of this model. It is important to note that for this 

algorithm the first N diagonals will be different from the results for the simple paid chain ladder 

algorithm. It is important to note that for this algorithm the sample triangles will be identical to the 

results for the basic paid chain ladder algorithm, but all of the future values will differ. 

An Incurred Loss Chain Ladder Simulation 

In very simple terms, the model performs the following steps, many of which are consistent with the 

basic incurred chain ladder noted earlier: 

1. Use a triangle of cumulative incurred losses as input. Calculate the average age-to-age 

development factors (using volume weighted averages). 

2. Calculate a new triangle of “fitted values” – i.e., use the average age-to-age factors to 

“undevelop” each value in the latest diagonal to form a new triangle of values predicted by the 

model assumptions. 

3. Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are the “unscaled Pearson residuals.”  

4. Standardize the residuals so that they are independent and identically distributed (i.i.d.). 

5. Create a new incremental sample trapezoid by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals and using the age-to-age factors from Step 1 to 

determine the future fitted values. 

6. Develop and square that sample trapezoid, adding tail factors, and estimating ultimate losses. 

7. Using the basic OPD Bootstrap chain ladder model results, adjust the simulated incremental paid 

losses so that the total ultimate value for each accident year matches the total ultimate value for 

the incurred losses (which adjusts the incurred ultimate to a random paid pattern). 

8. Simulate in parallel using paid losses (Steps 1 to 6).  

9. Calculate the difference between the “ultimate” incurred values by year in Step 6 and the 

cumulative paid values for the triangle in Step 7, and then allocate this remaining expected 

incurred unpaid to the remaining future incremental values using the remaining expected paid 

pattern from Step 8 (which adjusts the remaining incurred ultimate to an expected payment 

pattern).  

10. Repeat the random selection, new trapezoid creation, and resulting adjusted unpaid calculations 

in Steps 5 through 9, X times. 

Note: 

The paid and incurred 
calculations are identical 
through Step 6. 

Note: 

Step 7 uses results from 
the basic model, not the 
ODP Residual model, so 
the triangle results are 
identical. 

Note: 

Step 8 uses the ODP 
Residual steps to run in 
parallel. The future 
incremental pattern is a 
combination of possible 
outcomes and expected 
values. 
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The result from the X simulations is an estimate of the distribution of possible outcomes for the first N 

diagonals and point estimates beyond the N diagonals. From this we can calculate the mean, standard 

deviation, percentiles, etc. To calculate the Claim Development Result, the average from the basic ODP 

Bootstrap model is subtracted from each iteration of this model. It is important to note that for this 

algorithm the first N diagonals will be different from the results for the simple incurred chain ladder 

algorithm. It is important to note that for this algorithm the sample triangles will be identical to the 

results for the basic incurred chain ladder algorithm, but all of the future values will differ. 

A Bornhuetter-Ferguson Simulation 

The adjustments for the paid and incurred Bornhuetter-Ferguson (BF) methods for the ODP Residual 

algorithm are similar to the adjustments to the basic chain ladder methods. The BF bootstrap model 

requires an additional set of parameters for the ultimate losses (i.e., the mean or a priori) per year, as 

noted above.  

Adjusting Step 5 of the ODP Residual chain ladder model, the expected values for N future diagonals 

will be calculated using the expected values of the BF method (i.e., without randomness). The squaring 

of the trapezoid in Step 6 will similarly be replaced with the BF method. The BF method gives the total 

remaining unpaid amount by year, as noted above. To maintain internal consistency, the sampled a 

priori loss ratios by year used for the basic BF model are also used for the ODP Residual algorithm 

without resampling them. 

The total unpaid needs to be divided into incremental losses. For the ODP Residual algorithm, only the 

Deterministic Option noted above can be used.  

The incurred BF model uses the same extra step to convert the total IBNR to total unpaid like the 

incurred chain ladder model, except that it will use a parallel paid BF model instead of a paid chain 

ladder model in Step 8 and the simulated loss ratios used in the incurred BF model will also be used in 

the parallel paid BF model. It is important to note that for these algorithms the sample triangles will be 

identical to the results, but all of the future values will differ from results for the basic paid and 

incurred BF algorithms, respectively. Keeping with the simplicity theme, we only illustrate the paid BF 

model in Appendix A. 

A Cape Cod Simulation 

Similarly, we have extended both the paid and incurred chain ladder models by incorporating the Cape 

Cod method into the model steps. The Cape Cod bootstrap model requires these additional 

parameters, as noted above. 

Step 5 of the ODP Residual chain ladder model will use the Cape Cod method to calculate the expected 

values for N future diagonals. The squaring of the trapezoid in Step 6 will similarly be replaced with the 

CC method. The calculation of the incremental values for the next step can only be done using the 

Deterministic option for the ODP Process algorithm. 

The incurred Cape Cod model uses the same extra step to convert the total IBNR to total unpaid as the 

incurred chain ladder model, except that it will use a parallel paid Cape Cod model instead of a paid 

chain ladder model in Step 8. It is important to note that for these algorithms the sample triangles will 

be identical to the results, but all of the future values will differ from results for the basic paid and 

incurred CC algorithms, respectively. Keeping with the simplicity theme, we will illustrate only the paid 

Cape Cod model in Appendix A. 
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A BASIC MACK BOOTSTRAP ULTIMATE PAID CHAIN LADDER SIMULATION 

For purposes of providing a simple review of the Mack Bootstrap model we will follow the most basic 

form, a simulation of possible future outcomes based on the paid loss triangle and the chain ladder 

approach. 

In very simple terms, the model performs the following steps, most of which are different than the 

basic ODP Bootstrap chain ladder simulation noted earlier: 

1. Use a triangle of cumulative paid losses as input. Calculate a triangle of age-to-age development 

factors and the average age-to-age factors (using volume weighted averages). 

2. Calculate a triangle of residuals using the age-to-age factors and averages. These are called 

“unscaled residuals” in the model. 

3. Calculate the standard deviations of the residuals and standardize the residuals so that they are 

(i.i.d.). 

4. Create a new sample triangle of age-to-age factors by selecting randomly with replacement from 

among the triangle of standardized residuals22 and calculate the volume weighted average of the 

sample age-to-age factors. 

5. Use the average factors from Step 4 to project one diagonal of expected cumulative values, 

adding tail factor, as appropriate. 

6. Add process variance to the future cumulative values along the diagonal from Step 5 (which will 

change the point estimate to a possible outcome). 

7. Add the diagonal from Step 6 to the original data triangle and repeat steps 5 and 6 until the all 

future diagonals are complete. (This is an iterative process which adds one diagonal at a time until 

all the diagonals are complete.) 

8. Repeat the random selection, new diagonal creation, and resulting unpaid calculations in Steps 4 

through 7, X times. 

The result from the X simulations is an estimate of a distribution of possible outcomes for the future 

diagonals. From this we can calculate the mean, standard deviation, percentiles, etc. It is important to 

note that this algorithm is COMPLETELY different than all other models described above. This model is 

only available for paid data and this chain ladder approach. 

USING THE MACK TIME HORIZON ALGORITHM 

A Paid Loss Chain Ladder Simulation 

For purposes of providing a simple review of the Mack Horizon algorithm’s steps for calculating risk on 

an N-Year time horizon, we will follow the most basic form, a simulation of possible future outcomes 

based on the paid loss triangle and the chain ladder approach. 

In very simple terms, the model performs the following steps, most of which are different than the 

simple chain ladder simulation noted earlier: 

1. Use a triangle of cumulative paid losses as input. Calculate a triangle of age-to-age development 

factors and the average age-to-age factors (using volume weighted averages). 

 

22 Other options for simulating the sample triangle do not apply to this model. 
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2. Calculate a triangle of residuals using the age-to-age factors and averages. These are called 

“unscaled residuals” in the model. 

3. Calculate the standard deviations of the residuals and standardize the residuals so that they are 

(i.i.d.). 

4. Create a new sample triangle of age-to-age factors by selecting randomly with replacement from 

among the triangle of standardized residuals and calculate the volume weighted average of the 

sample age-to-age factors. 

5. Use the average factors from Step 4 to project one diagonal of expected cumulative values, 

adding tail factor, as appropriate. 

6. Add process variance to the future cumulative values along the diagonal from Step 5 (which will 

change the point estimate to a possible outcome). 

7. Add the diagonal from Step 6 to the original data triangle and repeat steps 5 and 6 until the first N 

future diagonals are complete. (This is an iterative process which adds one diagonal at a time until 

the first N diagonals are complete.) 

8. Recalculate the age-to-age factors up to the Nth diagonal and use these factors to project the 

remaining expected unpaid. 

9. Repeat the random selection, new diagonal creation, and resulting unpaid calculations in Steps 4 

through 8, X times. 

The result from the X simulations is an estimate of a distribution of possible outcomes for the first N 

diagonals and point estimates beyond the N diagonals. From this we can calculate the mean, standard 

deviation, percentiles, etc. To calculate the Claim Development Result, the average from the basic 

Mack Bootstrap model is subtracted from each iteration of this model. It is important to note that this 

algorithm is COMPLETELY different than all other models described above. This model is only available 

for paid data and this chain ladder approach. 

A BASIC HAYNE MLE INCREMENTAL FREQUENCY SIMULATION 

For purposes of providing a simple review of the Hayne MLE model we will follow the most basic form, 

a simulation of possible future outcomes based on the reported claim count triangle and the ultimate 

exposures. 

In very simple terms, the model performs the following steps, all of which are different than the basic 

ODP Bootstrap chain ladder simulation noted earlier. While there are 4 different variations of this 

model (Berquist Sherman, Cape Cod, Chain Ladder and Hoerl Curve), the basic steps are the same for 

each and only the details of Steps 2 through 5 vary depending on the specific model variation chosen. 

1. Use a triangle of cumulative reported claim counts and ultimate exposures as input. Calculate a 

triangle of incremental claim frequencies by dividing the triangle of claim counts by the ultimate 

exposures by period, then by taking the differences of the cumulative values to get incremental 

values. 

2. Use maximum likelihood to fit the selected model to the incremental frequency triangle. This will 

result in a mean and standard deviation for all the parameters, as well as a variance–covariance 

matrix. 

3. Calculate the predicted means and standard deviations of all incremental cells for the entire 

square. The historical predictions (triangle) can be used to calculate residuals, etc. to examine the 

goodness of fit of the model. The future predictions can be used to approximate the future 

distributions. 
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4. Create a new sample of the model parameters using the multivariate normal distribution and the 

parameters from Step 2. 

5. Use the sample parameters from Step 4 to calculate sample means and standard deviations for all 

incremental cells in the entire square. [Note: Multiplying these mean values times the ultimate 

exposure by period would result in a point estimate.] 

6. Add process variance to the values from Step 5 by sampling each cell from the normal distribution 

using the mean and standard deviation values by cell (which will change the point estimate to a 

possible outcome). 

7. Calculate the sample claim counts by multiplying each incremental cell times the ultimate 

exposures by period. Use just the future incremental claim counts to derive an estimate of the 

unreported claims by period. 

8. Repeat the random parameter sampling, sample square creation, random process variance and 

resulting unreported calculations in Steps 4 through 7, X times. 

The result from the X simulations is an estimate of a distribution of possible outcomes for the future 

unreported claim counts. From this we can calculate the mean, standard deviation, percentiles, etc. It 

is important to note that this algorithm is COMPLETELY different than all other models described 

above. This model is only available for reported claim count data. Normally, the averages of the 

unreported claim counts is used to select the ultimate claim counts for use with the Hayne MLE 

Incremental Severity models. Since the Hayne MLE Incremental Severity model algorithm is similar to 

the Hayne MLE Incremental Frequency model, only the Incremental Severity models are illustrated in 

Appendix A. 

A BASIC HAYNE MLE INCREMENTAL SEVERITY SIMULATION 

For purposes of providing a simple review of the Hayne MLE model we will follow the most basic form, 

a simulation of possible future outcomes based on the paid loss triangle and the ultimate claim counts. 

In very simple terms, the model performs the following steps, all of which are different than the basic 

ODP Bootstrap chain ladder simulation noted earlier. While there are 4 different variations of this 

model (Berquist Sherman, Cape Cod, Chain Ladder and Hoerl Curve), the basic steps are the same for 

each and only the details of Steps 2 through 5 vary depending on the specific model variation chosen. 

1. Use a triangle of cumulative paid losses and ultimate claim counts as input. Calculate a triangle of 

incremental claim severities by dividing the triangle of paid losses by the ultimate claim count by 

period, then by taking the differences of the cumulative values to get incremental values. 

2. Use maximum likelihood to fit the selected model to the incremental severity triangle. This will 

result in a mean and standard deviation for all the parameters, as well as a variance–covariance 

matrix. 

3. Calculate the predicted means and standard deviations of all incremental cells for the entire 

square. The historical predictions (triangle) can be used to calculate residuals, etc. to examine the 

goodness of fit of the model. The future predictions can be used to approximate the future 

distributions. 

4. Create a new sample of the model parameters using the multivariate normal distribution and the 

parameters from Step 2. 

5. Use the sample parameters from Step 4 to calculate sample means and standard deviations for all 

incremental cells in the entire square. [Note: Multiplying these mean values times the ultimate 

claim count by period would result in a point estimate.] 
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6. Add process variance to the values from Step 5 by sampling each cell from the normal distribution 

using the mean and standard deviation values by cell (which will change the point estimate to a 

possible outcome). 

7. Calculate the sample paid losses by multiplying each incremental cell times the ultimate claim 

count by period. Use just the future incremental paid losses to derive an estimate of the unpaid 

losses by period. 

8. Repeat the random parameter sampling, sample square creation, random process variance and 

resulting unpaid calculations in Steps 4 through 7, X times. 

The result from the X simulations is an estimate of a distribution of possible outcomes for the future 

unpaid losses. From this we can calculate the mean, standard deviation, percentiles, etc. It is important 

to note that this algorithm is COMPLETELY different than all other models described above. This model 

is only available for paid loss data. 

Appendix A has a numerical example of each of the four variations (Berquist Sherman, Cape Cod, Chain 

Ladder and Hoerl Curve) of the Hayne MLE Incremental Severity model. 
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4. Setting up a New Model 

OVERVIEW 

The basic analysis process looks like this: 

1. Open the Arius software and use File | New to create a new project file. 

2. Provide basic information about the data you will be entering and working with in the PROJECT 

SETTINGS dialog: 

 Use the Data Structure tab to change the size and structure of the triangles you will enter 

into the model; 

 Use the General tab to enter project information and notes; and 

 Use the Segments tab to add all of the lines of business you will work with in this model; each 

line of business or reserving segment will have its own data, models and assumptions. 

 Click OK on the bottom of the PROJECT SETTINGS dialog to finish creating a new file. 

3. Use File | Save As to save your file. 

4. From the HOME ribbon, click on the MODEL OPTIONS icon in the STOCHASTIC area to open the 

MODEL OPTIONS dialog. 

 Use the OPTIONS tab to change any of the GLOBAL OPTIONS used with all stochastic models or 

either of the ODP BOOTSTRAP OPTIONS which are only used with the ODP Bootstrap models 

for all segments; 

 If you select the “Yes, Term” ENABLE DISCOUNT RATE option, then use the TERM DISCOUNT tab 

to either manually enter, or select from a lookup table, a discount rate yield curve; and 

 Use the DEFAULT MODEL SELECTION tab to select the models you expect to use for every 

segment. 

 Click OK on the bottom of the MODEL OPTIONS dialog to save your changes. 

5. Below the HOME ribbon, use the SEGMENT drop-down list to select one of the lines of business. 

6. In the DATA | INPUTS | ALL INPUTS area of the Navigation Pane: 

 Enter Paid Loss and/or Incurred Loss data. 

 Enter Earned Premiums, Ultimate Premiums and/or Exposure data. 

 Enter Closed Claims and/or Reported Claims data. 

7. In the STOCHASTIC | ODP BOOTSTRAP | MODEL ASSUMPTIONS area of the NAVIGATION PANE: 

 Select your General Model Options for this line of business. 

 Enter Bornhuetter-Ferguson and/or Cape Cod assumptions. 

8. From the HOME ribbon, click on the RUN DIAGNOSTICS icon and select the RUN DIAGNOSTICS FOR 

SEGMENTABBR option to fill the exhibits and graphs with diagnostics. 

9. In the STOCHASTIC | ODP BOOTSTRAP | PAID LOSS | DIAGNOSTICS and/or the STOCHASTIC | ODP BOOTSTRAP | 

INCURRED LOSS | DIAGNOSTICS areas of the NAVIGATION PANE, respectively: 

Note: 

The COMPANY/BUSINESS UNIT 
entry will be used in all of 
your table & graph 
headers. 

Note: 

The ABBREVIATION is used in 
the system navigation, but 
the DESCRIPTION will be used 
in all of your table & graph 
headers. 

Note: 

Remember that 
throughout the system, 
data entry areas are white 
and areas that are 
calculated or which do not 
require user input are 
signified by a tan 
background. 
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 Review the patterns in the RESIDUAL GRAPHS window and adjust for heteroscedasticity as 

necessary, using the graphs in the RESIDUAL RELATIVITY window and/or using the SUGGEST HETERO 

GROUPS icon and select the SUGGEST HETERO GROUPS FOR SEGMENTABBR option from the HOME 

ribbon, if desired. 

 If using the icon to find suggested hetero groups, you will need to enter values in, or copy 

and paste into, the Group Number row in the HETEROSCEDASTICITY table. Alternatively, you can 

click on the Select Hetero Groups Graphically button in the RESIDUAL GRAPHS window to select 

the groups. 

 Review the Normality (Q-Q) Plot and Box-Whisker Plot in the NORMALITY window to determine 

if you need to exclude any outliers. 

 To remove an outlier, you can either click on the appropriate dot in the RESIDUAL GRAPHS 

window (the dot will turn red once selected as an outlier) or you can identify the correct cell 

with a one (“1”) in the OUTLIERS table. 

 After selecting (or changing) hetero groups and/or outliers, you will need to use the RUN 

DIAGNOSTICS icon again to recalculate all of the diagnostic statistics. 

 Use the TAIL FACTOR tool to enter tail factor assumptions. 

10. Run the simulations for this segment using RUN SIMULATIONS icon and selecting the RUN SIMULATIONS 

FOR SEGMENTABBR option from the HOME ribbon. 

11. In the STOCHASTIC | ODP BOOTSTRAP | PAID LOSS | MODEL NAME and/or the STOCHASTIC | ODP BOOTSTRAP | 

INCURRED LOSS | MODEL NAME areas of the NAVIGATION PANE, respectively: 

 Review the simulation results in all the tables and graphs for each model; and  

 Interactively, adjust model options and re-run the diagnostics and/or simulations until you 

are satisfied with the model fit and simulation results for each model. 

12. Repeat steps #7 to 11 above for the Mack Bootstrap and Hayne MLE models, as desired. To 

activate these models for each segment, you must have selected them as part of your Default 

Model Selection options in step #4 above, or you can use the CHOOSE MODELS icon from the HOME 

ribbon to customize which models you use for each segment. 

13. In the STOCHASTIC | ODP BOOTSTRAP | ODP SUMMARY | ASSUMPTIONS area of the NAVIGATION PANE, enter 

weights by accident period for each model in the MODEL WEIGHTS table and simulate again to get 

the initial “best estimate.” 

14. In the STOCHASTIC | ODP BOOTSTRAP | ODP SUMMARY | SUMMARY RESULTS area of the Navigation Pane: 

 Review the simulation results in all the tables and graphs for “best estimate” of the 

distribution; 

 Optionally, change the weights entered by accident period in step #13 above, re-simulate the 

“best estimate”, and review the simulation results again; and 

 Compare stochastic and deterministic “best estimates” and, optionally, enter selected total 

unpaid in the last column in the DETERMINISTIC CALCULATIONS table, click to check the “Use 

Selected Unpaid as Mean” checkbox, and re-simulate to shift results to match selected 

reserves. 

15. Repeat steps #5 to 14 above for each line of business in the model. 

16. From the HOME ribbon, click on the RUN DIAGNOSTICS icon and select the RUN DIAGNOSTICS FOR ALL 

SEGMENTS & CORRELATION option which will not only update all the diagnostic results for all the 
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segments, but it will also generate the correlation matrix tables on the ODP BOOTSTRAP AGGREGATION 

area of the NAVIGATION PANE. 

17. In the ODP BOOTSTRAP AGGREGATION | ASSUMPTIONS | CORRELATION area of the Navigation Pane: 

 Review the various correlation matrices that are calculated for you in the Calculated table. 

 Use the User Selected object to enter correlation coefficients for each pair of segments, or 

use one of the Quick Fill buttons to either fill the correlation matrix with the same value for 

each pair or to fill the correlation matrix with values from one of the calculated tables. 

 You may also change the Degrees of Freedom for the T-distribution to be used in the 

correlation process in the USER SELECTED window. 

18. From the HOME ribbon, click on the RUN SIMULATIONS icon and select the RUN SIMULATIONS FOR ALL 

SEGMENTS & AGGREGATION option to run simulations for all segments and generate a final overall 

distribution taking into account the effect of correlation between the segments. 
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STEP 1:  CREATE A NEW MODEL FILE 

1. In Windows, go to START | ALL PROGRAMS | ARIUS | ARIUS which will open the Arius software. 

2. In Arius, use FILE | NEW to create a new project file.  

STEP 2:  DEFINE THE SIZE AND STRUCTURE OF YOUR DATA SETS 

1. When using FILE | NEW as noted in Step 1, the PROJECT SETTINGS dialog will automatically open. You 

can also open the PROJECT SETTINGS dialog using the PROJECT SETTINGS icon on the HOME ribbon. 

2. Use the DATA STRUCTURE tab (as illustrated in Image 4-1). 

 

 

Here you define the basic attributes of all triangles of data in the project file. If your project is for 

many lines of business with triangles of different sizes, then you should fill in the specifications for 

the largest triangle that you expect to work with in this file. You will specify: 

 Number of Exposure Periods – the maximum number rows in your triangles 

 Number of Development Periods – the maximum number of columns in your triangles 

 Length of Exposure Periods – whether the rows are annual, semi-annual, quarterly, or 

monthly. 

 Length of Development Periods – whether the columns are annual, semi-annual, quarterly, 

or monthly. 

 Year of First Exposure Period – the year associated with the first row of data in your largest 

triangle 

 Ending Month of First Exposure Period – the month that represents the end of the first row’s 

data (June = 6, December = 12, etc.) 

Image 4-1: 

DATA STRUCTURE tab in the 
Project Settings Dialog Box 

Note: 

For the Stochastic models 
the length of the Exposure 
Periods and Development 
Periods must be the same 
(i.e., symmetrical). For the 
Deterministic methods 
they can be different (i.e., 
asymmetrical). 
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 First Development Age (in Months) – how many months of development there are in the 

first column (in most annual x annual triangles this will be 12, but this first column can be less 

than the other columns, as in 3/15/27/39… triangles) 

 Length of Last Calendar Period (in Months) – how many months are in your most recent 

diagonal (for example in annual x annual triangles evaluated after only 6 months, this would 

be reflected by a “6”) 

 Exposure Period Type –This can be either Accident or Policy period. Your selection affects 

the labels on your triangles, and it also affects the model calculations in some situations (e.g., 

for uneven exposures or “stub” period exposures).23 

 First Exposure Period Includes All Prior – If checked, this signifies that the first row is 

different from the rest and will be ignored in the simulation models. 

As a check, the dialog calculates the First Development Age of the Last Calendar Period and the data’s 

Valuation Date based on your input. If this date is not as expected, review your other selections on this 

dialog before pressing OK. 

STEP 3:  ADD GENERAL INFORMATION ABOUT YOUR PROJECT 

1. When using FILE | NEW as noted in Step 1, the PROJECT SETTINGS dialog will automatically open. You 

can also open the PROJECT SETTINGS dialog using the PROJECT SETTINGS icon on the HOME ribbon. 

2. Use the GENERAL tab (as illustrated in Image 4-2). 

 

 

Here you include general information about your project. You will specify: 

 

23 From this point forward the manual will generally refer to either accident year or accident period, but policy year or policy period can 
usually be considered interchangeable. 

Image 4-2: 

GENERAL tab in the Project 
Settings Dialog Box 
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 Project Title – this can be the same as the filename, but it can be different. Whatever you 

include in this field will be part of filenames when exporting results to help you identify the 

files. 

 Company/Business Unit – this should be a full company or business unit name. Whatever 

you include in this field will be part of the headers for all tables and graphs, including when 

exported for creating reports. 

 Author – this is the name of the person(s) primarily responsible for this project. 

 Description – this field can be any size. It is available to allow you to describe this project in 

detail for a peer reviewer or anyone else that might use the project file. 

 Notes – this field can be any size. It is available to allow you to save notes on your analysis to 

be shared with a peer reviewer or anyone else that might use the project file. 

  Press OK to save the changes in the GENERAL tab. 

STEP 4:  IDENTIFY THE LINES OF BUSINESS TO BE ANALYZED IN THIS PROJECT 

Decide how many LOBs you want in your project. Typically, these will be related groups of data, lines 

that are managed by the same management unit, or data that is otherwise reviewed for reserving 

purposes. You should consider three things when deciding which and how many lines to include in a 

project file: 

 All input areas must have the same “shape” (e.g., if one triangle is developing 12-24-36 with 

a 6 month last diagonal by accident year, all triangles in the same project must have this 

shape) and evaluation date. 

 It may be better to keep the number at a “manageable” level (say, for a 10x10 triangle, 

approximately 10-15 LOBs) as the model could run more slowly with more LOBs. This could 

also depend on how you split up the workload. 

 On the other hand, you can correlate and aggregate different sub-groups within the same 

project file (e.g., aggregating different sub-lines or hazard types within a line of business, 

geographic areas, management or business units, etc. into subtotals and/or a corporate 

total) – See Section 7. Therefore, you can fit all the LOBs into one project file. 

1. When using FILE | NEW as noted in Step 1, the PROJECT SETTINGS dialog will automatically open. You 

can also open the PROJECT SETTINGS dialog using the PROJECT SETTINGS icon on the HOME ribbon. 

2. Use the SEGMENTS tab (as illustrated in Image 4-3). 
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Here you include an abbreviation and full name for each segment in your project. You will specify: 

 Segment Abbreviation – this is normally a shorter name or code used to identify a segment 

(e.g., WC-xCA). The abbreviation will be used in all navigation areas for easy identification of 

a segment. 

 Segment Description – this is normally a longer description of the segment (e.g., Workers 

Compensation - Countrywide excluding CA). Whatever you include in this field will be part of 

the headers for all tables and graphs, including when exported for creating reports. 

3. Use the New button (shown in Image 4-3) to create additional lines of business or reserving 

segments you want to work with in the file. For each segment added to the file you will need to 

include the abbreviation and description as noted just above. 

4. Select an existing segment and use the Delete button (shown in Image 4-3) to remove any lines of 

business or reserving segments you no longer want in the file. 

5. Press OK to save the changes in the SEGMENTS tab. 

STEP 5:  REVIEW THE STOCHASTIC MODEL OPTIONS 

From the HOME ribbon you can click on the Stochastic MODEL OPTIONS icon to review and control settings 

that affect all the segments in the model, as shown in Image 4-4. 

Image 4-3: 

SEGMENTS tab in the Project 
Settings Dialog Box 
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This will open the MODEL OPTIONS dialog box which will be focused on the OPTIONS tab, as shown in 

Image 4-5. 

The Global Options area in the OPTIONS tab of the MODEL OPTIONS dialog (illustrated in Image 4-5) allows 

you to change options that apply to all segments when running the models or tasks that will be used 

later. It is good, however, to have an understanding of the options here, so you will know where to find 

them and how they are used. 

1. Iterations – The default is 10,000, but you can reduce this to a low of 1 or increase it to a high of 

50,000. This will, of course, affect the speed of the model (e.g., you could use a lower number 

while testing models), but you should set the number of iterations high enough to get a relatively 

stable result from one run to the next. 

 

 

2. Seed Value – The default is zero, which means that a new set of random values will be simulated 

each time the model is run. If you would like to replicate the results exactly each time (e.g., to test 

Image 4-4: 

MODEL OPTIONS icon in the 
HOME ribbon 

Note: 

A Seed Value other than 
zero will only guarantee 
the results will stay the 
same on each model run if 
all parameters and other 
LOB specific model settings 
are the same. 

Image 4-5: 

OPTIONS tab in the MODEL 

OPTIONS dialog box 
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the impact of a specific model parameter change) you should enter a positive integer in this field 

between 1 and 2,146,483,648 (= 231 – 1). 

3. Result Percentiles – In addition to the Mean, Standard Error, Coefficient of Variation, Minimum 

and Maximum values, you can specify ten percentiles that will be included in the output tables 

when the simulations are run. 

4. Time Horizon Period(s) – When using the ODP Bootstrap or Mack Bootstrap models, this is the 

number of periods in the time horizon. 

5. Enable Discount Rate – The default is No, but the other options can be used to generate 

discounted simulation results. Selecting the Yes, Annual option will open the Discount Rate per 

Annum box so you can enter a single discount rate that will be used for all discount factors, as 

illustrated in Image 4-6. The discount rate is calculated as follows: 

Discounted incremental = incremental x (1 + discount rate / 12) ^ months in exposure period 

 

 

Selecting the Yes, Term option hides the Discount Rate per Annum box, but enables the TERM DISCOUNT 

tab in the MODEL OPTIONS dialog, as illustrated in Image 4-7. With the Yes, Term option selected, you 

can now select the TERM DISCOUNT tab in the MODEL OPTIONS dialog and use one of two options for using 

a yield curve for the discount factors instead of a single discount rate. The first option is to select the 

Enter/Edit Rate Manually radio button and then enter a Month and Rate for as many discount values 

as you need in the User entered values area, as illustrated in Image 4-8. When using this option you 

can change the Manual Increment option to either Annual, Semi-Annual, Quarterly or Monthly, in 

which case the values in the Month column will increment automatically by 12, 6, 3 or 1, respectively, 

as you enter a new Rate. This is only intended to ease the data entry of a discount yield curve, so you 

can modify any entered Month or Rate. 

 

 

When the User entered values are interpolated in order to calculate discount factors, the Month value 

will be interpreted as final month that the prior rate will be used. Thus, the first Month will always be 

Note: 

By using a Seed Value 
other than zero, you can 
specify different 
percentiles each time you 
run the model and obtain 
more than ten percentile 
outputs or turn discounting 
on and off to assure that 
the difference is only due 
to the discount factors. 

Image 4-6: 

OPTIONS tab in the MODEL 

OPTIONS dialog box, with 
Enable Discount Rate 
option set to Yes, Annual 

Note: 

When entering rates 
manually, keep in mind 
that the values in the 
Month column must be 
increasing. 

Image 4-7: 

OPTIONS tab in the MODEL 

OPTIONS dialog box, with 
Enable Discount Rate 
option set to Yes, Term 
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zero since there are no rates prior to the first Period. In the example in Image 4-8, the second Month 

of 12 means that the first Rate will be used for 12 months and then the second Rate will start being 

used until the Month shown in the next Period. For the last Period entered, the final Rate will be used 

indefinitely (e.g., in the example in Image 4-8 the second rate of 5.00% will be used after 12 months for 

as many months needed to discount all cash flows). 

 

 

The second option is to select the Get Rates for File radio button, which will allow you to import rates 

from saved rate files, as illustrated in Image 4-9. To import rates, first use the Select Table drop down 

list to select a file, then use the Select Rates drop down list to select a specific rate curve saved in that 

file. Once the rates you want are selected, click the Get Rates button to import those rates into the 

User entered values table. 

 

 

After you import rates from a file, you can always switch to the Enter/Edit Rate Manually option and 

edit any values in the User entered values table. 

6. Save Results to File – The default is No, but the other options might be useful if you wish to 

calculate output statistics that are not already available in the standard output or combine the 

Arius results with non-Arius simulations. Selecting Exposure Totals means that the accident year 

unpaid, accident year ultimate losses and calendar year cash flow results for year in total and for 

all years combined will be saved for each iteration in the simulation, as illustrated in Image 4-10. 

Image 4-8: 

Term Discount tab in the 
Model Options dialog box, 
with Enter/Edit Rate 
Manually selected 

Note: 

The Interpolated values 
used in simulation table 
will be populated when 
you run simulations. You 
can reopen the MODEL 

OPTIONS dialog after 
simulation to see the 
discount factors. 

Image 4-9: 

TERM DISCOUNT tab in the 
MODEL OPTIONS dialog box, 
with Get Rates from File 
selected 



Milliman  Setting up a New Model 

Arius Stochastic User Guide 37 

The location of the saved data file will be found in the 

C:\Users\username\Documents\Milliman\Arius\Sim_Results directory, where the username is 

your Windows user name.  

 

 

Selecting All Incrementals, by Iteration means that the results for each incremental cell (both 

historical and future) for each iteration will be saved, as illustrated in Image 4-11. 

 

 

Selecting All Incrementals, by Year means that the results for each incremental cell (both 

historical and future) for each iteration will be saved, as illustrated in Image 4-12. 

 

Row

1 Unpaids

2 Iteration 2009 2010 2011 2012 2013 Total

3 1 0 56 127 501 656 1,340

4 2 0 87 156 287 429 958

5 3 0 52 177 223 839 1,291

… … … … … … … …

10,002 10,000 0 61 172 353 768 1,353

10,003 Ultimate Losses

10,004 Iteration 2009 2010 2011 2012 2013 Total

10,005 1 1,288 720 970 1,360 994 5,333

10,006 2 1,133 927 669 974 728 4,431

10,007 3 1,447 913 861 816 1,091 5,129

… … … … … … … …

20,004 10,000 1,162 598 836 1,017 1,139 4,752

20,005 Premiums

20,006 Iteration 2009 2010 2011 2012 2013 Total

20,007 N 2,000 2,000 2,000 2,000 2,000 10,000

20,008 CashFlows

20,009 Iteration 2014 2015 2016 2017 Totals

20,010 1 627 388 265 61 1,340

20,011 2 521 236 110 92 958

20,012 3 744 287 156 105 1,291

… … … … … … …

30,009 10,000 762 270 220 101 1,353

Row

1 Iteration Accident Year 12 24 36 48 60

2 1 2009 466 463 178 103 78

3 1 2010 206 262 118 79 56

4 1 2011 284 405 155 83 44

5 1 2012 380 479 216 118 167

6 1 2013 338 272 226 98 61

7 2 2009 279 451 223 113 68

8 2 2010 293 309 155 83 87

9 2 2011 220 214 79 65 91

10 2 2012 257 430 152 92 43

11 2 2013 299 217 53 66 92

… … … … … … … …

49,997 10,000 2009 331 397 242 85 107

49,998 10,000 2010 171 239 108 20 61

49,999 10,000 2011 191 306 167 135 36

50,000 10,000 2012 233 431 154 96 102

50,001 10,000 2013 371 411 138 117 101

Image 4-10: 

Exposure Totals Data. The 
row column shown in bold 
italic was added for 
illustration purposes and is 
not part of the saved data 
file. 

Image 4-11: 

All Incremental Data. The 
row column shown in bold 
italic and lines were added 
for illustration purposes 
and are not part of the 
saved data file. 
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Selecting Correlation Ranks means that the ranks used to correlate the segment results into the 

aggregate results will be saved. This is illustrated in Image 4-13. In this example, we have 10,000 

iterations and 3 lines of business. To use these ranks, you would sort your 10,000 total unpaid 

results according to these rank values. For example, the aggregate unpaid for the first iteration 

would be the 1,117th largest total unpaid result for the first line of business, plus the 3,561st 

largest total unpaid result for the second line of business, plus the 8,601st largest unpaid result for 

the third line of business. The model does this automatically for you when producing aggregate 

results.  

 

 

The ODP Bootstrap Options area in the OPTIONS tab of the MODEL OPTIONS dialog (illustrated in Image 4-

5) allows you to change options that apply only to the ODP Bootstrap models, but to all segments 

when running the models or tasks that will be used later.  

1. Estimate Correlation Using – The default is MLE Copula, which uses a maximum likelihood 

estimation copula to solve for all correlations at once. The Pairwise option calculates the 

correlation between each pair of LOBs.  

The MLE Copula is a more mathematically rigorous methodology. However, since it solves for all 

correlations at once, it can only calculate the correlations between the data points that exist in 

the triangles in all the segments. If you have, say, some lines of business that you started to write 

in the last 5 years, and some that were put in run-off 5 years ago, they will have no common data 

points in their triangles, and this correlation calculation will fail and provide an all-zero matrix. 

In these types of situations, the Pairwise option is recommended. This measures correlations 

between each pair of segments individually. Those pairs of LOBs that do not have any overlapping 

data points will still show a correlation of zero, but correlations will still be calculated for the 

remaining pairs of segments. 

2. Bootstrap Option – The default is Ultimate, which activates the Basic models described in Section 

3 and Appendix A. Selecting the Time Horizon – ODP Process option will activate the ODP Process 

Row

1 Iteration Accident Year 12 24 36 48 60

2 1 2009 466 463 178 103 78

3 2 2009 279 451 223 113 68

4 3 2009 466 511 279 74 117

… … … … … … … …

10,001 10000 2009 331 397 242 85 107

10,002 1 2010 206 262 118 79 56

10,003 2 2010 293 309 155 83 87

10,004 3 2010 210 382 186 83 52

… … … … … … … …

20,001 10000 2010 171 239 108 20 61

20,002 1 2011 284 405 155 83 44

20,003 2 2011 220 214 79 65 91

20,004 3 2011 222 326 135 66 111

… … … … … … … …

50,001 10,000 2013 371 411 138 117 101

Row

1 Iterations LOB001 LOB002 LOB003

2 1 1,117 3,561 8,601

3 2 387 1,859 715

4 3 5,221 2,899 2,226
… … … … …

10,001 10,000 2,915 950 2,750

Image 4-12: 

All Incrementals Data. The 
row column shown in bold 
italic and lines were added 
for illustration purposes 
and are not part of the 
saved data file. 

Image 4-13: 

Correlation Ranks Data. 
The row column shown in 
bold italic was added for 
illustration purposes and is 
not part of the saved data 
file. 
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models described in Section 3 and Appendix A. Selecting the Time Horizon – ODP Residual option 

will activate the ODP Residual models described in Section 3 and Appendix A. 

The DEFAULT MODEL SELECTION tab  (illustrated in Image 4-14) allows you to define which models will 

automatically be selected when you create a new segment or when you have “Use Default 

Models” checked in the segment CHOOSE MODELS dialog (see Image 4-16). 

 

 

From the HOME ribbon you can click on the Stochastic CHOOSE MODELS icon to change the models 

used in each segment, as illustrated in Images 4-15 and 4-16.  

 

 

 

After the CHOOSE MODELS dialog is open, you can leave the Use Default Models option checked (or 

recheck the option) to use the models selected in the DEFAULT MODEL SELECTION tab of the MODEL 

OPTIONS dialog OR you can uncheck the Use Default Models option and customize the models 

used for a specific segment, as illustrated in Image 4-16. 

 

Image 4-14: 

Default Model Selection 
tab in the Model Options 
dialog box 

Image 4-15: 

CHOOSE MODELS icon in the 
HOME ribbon 
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Check Use Default 
Models option to use the 
models from the DEFAULT 
MODEL SELECTION tab of 
the MODEL OPTIONS 
dialog OR uncheck Use 
Default Models option to 
customize the model(s) 
selected for a Segment. 

Image 4-16: 

Using the CHOOSE MODELS 
dialog box 
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5. Using the ODP Bootstrap Models 

Even though the Arius system has numerous options to help you obtain the best model possible for 

your data, you can obtain valuable diagnostic information and even initial distribution estimates for a 

line of business with only a few steps, which can be summarized as: 

 enter the data to be modeled,  

 run the model diagnostics to populate the necessary statistics and fields, and 

 run the simulation to estimate future results (i.e., use the default model settings). 

Of course, the diagnostics and model results can be used to evaluate and improve how your model fits 

your data. Understanding the purpose and use of the diagnostic tools requires some prior statistical 

knowledge so we direct the interested reader to Appendix B, which provides a general overview of the 

diagnostic process. Therefore, this section assumes prior knowledge of statistics, and starts with the 

basics of running a model and builds on that foundation by exploring all of the different models, model 

options, diagnostics, and model output. 

REQUIRED DATA: PAID MODEL 

Inputs for the paid model are relatively simple. You can start with nothing more than a triangle of paid 

loss data, but if: 

IN ADDITION TO PAID LOSS DATA, IF YOU PROVIDE: THE SYSTEM CAN: 

 a vector of earned premium data  provide loss ratios by accident 
period at various percentiles 

 a triangle of incurred or reported loss data  reconcile Ultimate Losses using 
Paid, Case Reserves, and IBNR 

 a vector of ultimate exposure data  simulate based on exposure-

adjusted losses rather than only the 
raw data 

 

There are certain limitations that are imposed on the data by the mathematics involved in the model. 

Specifically: 

 The triangle shape must be symmetrical in terms of row and column periods – i.e., it must be 

annual x annual or quarter x quarter; 

 The system will work with triangles that contain a stub period (e.g., annual x annual with 

most recent diagonal evaluated at 6 months)  

 The system will work with triangles where the first development period is different from the 

rest (e.g., development columns of 6/18/30/42… or 3/15/27/39…) 

 The system will not work with truly asymmetrical triangles, such as annual accident periods x 

quarterly development. 

 There must be at least 3 diagonals of data. 

 Blank cells are acceptable anywhere in the triangle except on the most recent two diagonals, 

unless a whole row is blank (i.e., a triangle in run-off is OK) 

 Individual negative age-to-age factors are acceptable, and the average for a column can be 

negative.  

Note: 

If you have a partial last 
exposure period, then you 
should enter the earned 
premium in the 
appropriate column, but 
the ultimate premium and 
ultimate exposure are for 
the full period. For 
example, if you have an 
annual triangle but a 6 
month last diagonal, then 
you should enter the 
premiums earned for the 
first 6 months in the 
earned premium column 
and the fully annualized 
premium and/or exposure 
in the ultimate premium 
and ultimate exposure 
columns, respectively. For 
more details see Section 9. 



Using the ODP Bootstrap Models  Milliman 

42 Arius Stochastic User Guide 

 Do not enter “0” values where the values are unknown. The model will treat cells with “0” values 

as information (that is, no losses occurred in this period) and blank cells as unknown. 

REQUIRED DATA: INCURRED MODEL 

Inputs for the incurred model are also relatively simple. You can start with nothing more than a triangle 

of paid loss data and a triangle of incurred loss data, but if: 

IN ADDITION TO DATA TRIANGLES, IF YOU PROVIDE: THE SYSTEM CAN: 

 a vector of earned premium data  provide loss ratios by accident 
period at various percentiles 

 a vector of ultimate exposure data  simulate based on exposure-
adjusted losses rather than only 

the raw data 

 

All of the limitations that are imposed on the data by the mathematics involved in the model for the 

paid data also apply to the incurred data. In addition: 

 the paid and incurred triangles must be identical in terms of underlying shape and size (i.e., the 

triangle properties apply to both paid and incurred triangles); 

 the paid and incurred triangles must be virtually identical in terms of data: 

 The system will usually work if some individual cells are missing (i.e., blank) in one triangle 

but not the other; 

 The system will not work with an entire row missing in one triangle and not the other. 

REQUIRED DATA: BORNHUETTER-FERGUSON MODEL 

Inputs for the Bornhuetter-Ferguson model are also relatively simple. You can start with nothing more 

than a triangle of paid loss data and/or a triangle of incurred loss data as well as the a priori ultimate 

loss assumption by year, but if: 

IN ADDITION TO BASIC DATA IF YOU PROVIDE: THE SYSTEM CAN: 

 a vector of ultimate premium data  provide loss ratios as the a priori 

ultimate assumption 

 a vector of ultimate exposure data  simulate based on exposure-adjusted 
losses rather than only the raw data and 

can use pure premiums as the a priori 

ultimate assumption. 

 a vector of coefficients of variation for the a 
priori assumptions 

 include uncertainty in the a priori 
assumption by simulating a different 

assumption for each iteration 

 

All of the limitations that are imposed on the data by the mathematics involved in the model for the 

paid and incurred data, respectively, also apply to the Bornhuetter-Ferguson model. 
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REQUIRED DATA: CAPE COD MODEL 

Inputs for the Cape Cod model are also relatively simple. You can start with nothing more than a 

triangle of paid loss data and/or a triangle of incurred loss data as well as the default Cape Cod 

assumptions by year, but if: 

IN ADDITION TO BASIC DATA IF YOU PROVIDE: THE SYSTEM CAN: 

 a vector of ultimate premium data  provide loss ratios as the a priori 
ultimate assumption 

 a vector of ultimate exposure data  simulate based on exposure-adjusted 
losses rather than only the raw data and 

can use exposures as the Cape Cod 

calculation basis 

 vectors of premium index factors, loss trends 

and weights for the Cape Cod assumptions 

 use specific assumptions for the Cape 

Cod model instead of the default 
assumptions 

All of the limitations that are imposed on the data by the mathematics involved in the model for the 

paid and incurred data, respectively, also apply to the Cape Cod model. 

STEP 1:  ENTER BASIC MODEL DATA 

To get started, select one of your segments using the Segment drop down box below the HOME ribbon. 

In the Navigation Pane, select the DATA | INPUTS | ALL INPUTS collection. Notice that the first three tables 

in the collection, Paid Loss, Case Loss Reserves and Incurred Loss, are white; these are the data entry 

tables. You can fill in any two of these tables and the third will change to tan, which means it will be 

filled automatically and that you cannot enter data here any longer. 

1. Enter data for the Paid Loss triangle (as illustrated in Image 5-1) and the Incurred Loss triangle, if 

you have that available. You can either type in data or paste it in from another source. 

 

 

2. Also from the ALL INPUTS collection, you can enter Earned Premium and Exposure data, if you have 

that available (as illustrated in Image 5-2). Having this additional data allows the model to provide 

more information; this is especially true of Premium data, which allows the projection of ultimate 

loss ratios. 

Note: 

Throughout the system, 
data entry areas are white 
and areas that are 
calculated or which do not 
require user input are 
signified by a tan 
background. 

Image 5-1: 

Paid Loss Data Triangle 

Note: 

You can use the  icon to 
switch between cumulative 
and incremental or the  
icon to switch between 
accident and calendar 
views, or both, prior to 
bringing in the data. 
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. 

 

3. In order to enter the Ultimate Premium data (again from the ALL INPUTS collection), you must open 

the table and click on the Source Data  icon in order to get to the Deterministic table used to 

estimate Ultimate Premium. This is illustrated in Image 5-3. 

 

 

STEP 2:  REVIEW / ENTER THE MODEL ASSUMPTIONS 

Most of the Model Assumptions and Model Options are equivalent for both paid and incurred data, 

but they are independently applied. As noted in Section 3, for the incurred chain ladder model both 

the paid and incurred models are run in parallel and then the paid simulation is adjusted to match the 

ultimate values by year for the incurred model so that we end up with an apples-to-apples comparison 

of total unpaid estimates. Thus, the Model Assumptions and Model Options must be selected for both 

the paid and incurred columns whenever applicable. 

In the Navigation Pane, select the STOCHASTIC | ODP BOOTSTRAP | MODEL ASSUMPTIONS collection. The 

General window (shown in Image 5-4) includes model assumptions that will apply to all of the ODP 

Bootstrap models. 

Click on Source 
Data icon to open 
Comparison of 
Ultimate Premium 
Estimates table 

Image 5-2: 

Earned Premium and 
Exposure tables 

Note: 

The earned premiums are 
entered in a triangle so 
that they can be developed 
in the Deterministic 
portion of the system. 

Image 5-3: 

Ultimate Premiums and 
Comparison of Ultimate 
Premiums Estimates tables 
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1. Enable Exposure Adjustment – If you check this option, the system divides each row in your data 

triangle by the corresponding row in the Ultimate Exposures vector and uses the “exposure-

adjusted” data for all further calculations in the model. Values are then multiplied by the Ultimate 

Exposures again after all iteration calculations are complete, returning the modeled results to a 

“value” basis. This option can be useful when there is a changing exposure volume. By using 

exposure adjusted data in the model, a better fit could result and the simulation results will be 

adjusted for the relative exposures by period. 

2. Use Last X Periods – The default for all periods (“99”) is typical because the Generalized Linear 

Model theory underlying the ODP Bootstrap model is used to derive a volume weighted all-year 

average for the age-to-age ratios. However, if you feel that perhaps the most recent X years of 

history are more representative of the payment activity you may expect in the future, you can 

adjust the model to take this into account by setting Use Last X Periods to X, which causes the 

model to use X-period average age-to-age ratios. 

3. Enable Zero Residual Adjustment – All the residuals in your model should be independent and 

identically distributed. Theoretically, they should also sum to zero. If you want to, you can force 

the total, prior to any adjustment for heteroscedasticity, to be equal to zero by checking this 

option. If you do, the system subtracts from each non-zero residual the total of all the residuals 

divided by the number of non-zero residuals, so that the resulting total of all residuals is adjusted 

to zero. The model then uses these adjusted residuals. 

While it may be theoretically correct to check this option (set it to “Yes”), the default is unchecked 

(set to “No”) so that the sum will provide you with information about your data before running 

the model, and so that you can see how the sum changes as you change model options (e.g., 

hetero factors) – by setting this to “No” it is another diagnostic tool. In addition, if there is 

skewness in the residuals (and therefore the underlying data), you may want that to flow through 

into your projections by leaving it set to “No”. 

4. Limit Historical Incrementals to Zero – The random nature of the simulation process can result in 

negative amounts in the incremental results. When this option is checked, the system 

automatically replaces any negative incremental values in the bootstrap sample triangles with 

zero. Negative incremental values are certainly acceptable in many situations, for example when 

modeling paid data that includes salvage amounts, or when modeling incurred data; in those 

cases, negatives are frequently expected, and they should be reflected in the simulated data. 

Occasionally, however, negative incremental values in the bootstrap sample triangle can also lead 

Image 5-4: 

General Model Options 
window 

Note: 

Reducing the number of 
periods in the average age-
to-age ratios will also 
reduce the pool of 
residuals for resampling. 
Also, when the last 
diagonal is not a full 
period, it will be grossed 
up and included in the 
weighted average age-to-
age factors (See Section 9). 

Note: 

Changing any of the 
following options will 
change the core parts of 
the model and will require 
you to select RUN 

DIAGNOSTICS to update the 
residuals and other 
diagnostics: Enable 
Exposure Adjustment, Use 
Last X Periods, Enable Zero 
Residual Adjustment, 
Heteroscedasticity Groups, 
or Outlier Triangle. 
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to extreme age-to-age factors which, in turn, lead to unrealistic unpaid values for a few iterations. 

Limiting historical incremental values to zero in that case can be thought of as adding a constraint 

to the model which will effectively “adjust” these unrealistic iterations. 

5. Limit Future Incrementals to Zero – When this option is checked, the system automatically 

replaces any negative incremental values in the lower right portion (after process variance) of the 

completed rectangle with zero. This provides a similar ability to effectively constrain unrealistic 

iterations, but it is a separate constraint since there are times when only the future incremental 

values need to be constrained and not the historical incremental values, and vice versa. For 

example, negative historical incremental values in the bootstrap sample data can be reasonable 

when case reserves for later development ages are expected to be redundant while negative 

future incremental values could be causing unrealistic results for a few iterations. 

6. Residual Sampling Distribution – There are six options that will govern how the sample triangles 

are created.  

 Residuals – is the commonly known ODP Bootstrap model (illustrated in Appendix A) which 

samples the residuals with replacement to create the sample triangles. This is the default 

option.  

 Normal Fit – fits a normal distribution to the residuals and then simulates the residuals from 

the fitted normal distribution to create the sample triangles. You can choose this option if 

you believe the normal distribution is a good fit and don’t want the sampling process to be 

limited to the existing residuals. The parameters used in this option are shown below the 

Normal and Box Whisker Plots that are part of the DIAGNOSTICS collection.  

 Normal PV – The model uses the fitted triangle and assumes each incremental value is the 

mean and the incremental value times the scale parameter (adjusted by the hetero-factors) 

is the variance of a normal distribution. Essentially, the historical triangle incremental values 

are simulated in the same fashion as the process variance for the future incremental values.  

 Lognormal PV – Similar to the Normal PV, except with a Lognormal distribution.  

 Gamma PV – Similar to the Normal PV, except with a Gamma distribution.  

 No Resampling – For this option, the actual data triangle is used for each iteration. While this 

option should not be used for a final simulation, it is useful for diagnostic purposes to see 

how much of the difference between the deterministic estimate and the bootstrap mean is 

due to residual sampling versus process variance. 

7. Enable Process Variance – A key feature of the ODP Bootstrap model is the simulation of Process 

Variance. The primary calculation steps in the model focus on parameter risk, but process risk is 

used to add the final “random fluctuations” to the future incremental values. Checking this option 

will turn these random fluctuations on, while unchecking turns them off. 

You can get a measure of the effects of process variance versus residual sampling on your results 

by running the same model multiple times, with this option and/or residual sampling turned on 

and off, using the same user-input random seed value each time. The differences in the various 

simulations will help you diagnose the differences between the deterministic estimate and 

bootstrap mean for each model. 

8. Process Variance Distribution – If you check the Enable Process Variance option (above) then the 

default approach is to add process variance to the projected future development by simulating 
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from a Gamma distribution24 using each incremental value as the mean and the incremental value 

times the scale parameter (adjusted by the hetero-factors) as the variance. As an option you can 

select to use a Normal or Lognormal distribution instead. For example, if the residuals exhibit 

little or no skewness then either the normal or lognormal may be a more appropriate distribution 

for this feature of the data. 

In the Navigation Pane, select the STOCHASTIC | ODP BOOTSTRAP | MODEL ASSUMPTIONS collection. If you 

open the Bornhuetter-Ferguson window, you can enter the a priori loss ratio assumptions, including 

the Coefficient of Variation if you want to include uncertainty for this assumption. After you select RUN 

DIAGNOSTICS from the HOME ribbon, suggested parameters from the Mack Method are displayed to 

provide some additional guidance in making these entries (as illustrated in Image 5-5). Another helpful 

place to find more information about these inputs is to look at the Estimated Ultimate Loss Ratio 

results that come from simulating the other models. 

Based on your selected parameters by period, the percentile columns will show you the 95% 

confidence interval for the sampled a priori loss ratios. 

 

 

In addition to the basic assumptions for the Bornhuetter-Ferguson model, there are some additional 

options that can be adjusted as needed. 

1. Exposure Base – When this option is set to Premiums, the a priori ultimate losses are calculated 

by multiplying the a priori loss ratio times the Ultimate Premiums. When this option is set to 

Exposures, the a priori ultimate losses are calculated by multiplying the a priori pure premium by 

the Ultimate Exposures. When this option is set to None, the a priori ultimate losses are entered 

directly as the a priori assumption. 

2. Future Incrementals – When this option is set to Deterministic, the total Bornhuetter-Ferguson 

unpaid amounts are converted to the incremental values using the sequential unpaid factors as 

described Section 3 and illustrated in Appendix A. When this option is set to Statistical, the total 

Bornhuetter-Ferguson unpaid amounts are converted to the incremental values using a Bayesian 

weighting of the column sums and row sums.  

 

24 The Generalize Linear Model is based on the over-dispersed Poisson distribution, but the gamma distribution is used as a close 
approximation and simulates significantly faster. 

Note: 

The column headings for 
the Percentiles (i.e., 2.5% 
and 97.5%) can be changed 
to show a different range. 

Image 5-5: 

Bornhuetter-Ferguson 
model assumptions 

Note: 

When you change the 
exposure base, the a priori 
column heading and 
column formatting will 
change to adjust to the 
new assumption 
requirements. 
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3. Enable Distribution – A key feature of the deterministic Bornhuetter-Ferguson method is the 

ability to “weight” the deterministic chain ladder method with other knowledge about the 

expected outcome. Moving from a deterministic to a stochastic framework allows the user to also 

include uncertainty with respect to the expected outcome. By checking this option, the model will 

incorporate uncertainty in the a priori assumption by simulating a different expected outcome for 

each iteration. If this option is unchecked, the a priori assumption that you entered into the 

assumption dialog is used for every iteration. 

4. Distribution – If you checked Enable Distribution (above) then you can choose to simulate the a 

priori ultimate from a Lognormal distribution or a Normal distribution. The selection of the 

distribution will be based on your understanding of the skewness of the ultimate loss ratios. 

Also in the Model Assumptions collection is the Cape Cod window, which you can use to enter the 

Premium Index factors, the annual Loss Trend (separately for Paid and Incurred) and Weight 

(separately for Paid and Incurred) (as illustrated in Image 5-6). The default values are 1.000, 0% and 

100%, respectively, if no data-specific assumptions are entered for the Cape Cod model. 

 

 

The Premium Index factors will “adjust” the premiums to the current rate level so that they are “re-

stated” as if they were written in the latest exposure period. The calculation of the adjusted premium 

is simply Ultimate Premium x Premium Index. If another Exposure Base is selected (see below) then 

the Premium Index factors are not used. The Loss Trends are described in more detail below. 

The Weights are usually either 100% or 0%. If the Weight is 100%, then this year is included when 

calculating the weighted averages. If the Weight is 0%, then this year will be excluded from the 

weighted averages. The Weights have the effect of overriding or adjusting the Decay Rate (described 

below) for a particular year(s) as a weight between 0% and 100% is also possible. 

In addition to the basic assumptions for the Cape Cod model, there are some additional options that 

can be adjusted as needed. 

1. Exposure Base – When this option is set to Premiums, the Cape Cod methodology is calculated 

using the ultimate premiums as the basis, which has the effect of using loss ratios. When this 

option is set to Exposures, the methodology uses ultimate exposures as the basis, which has the 

effect of using pure premiums. When this option is set to None, the methodology uses one as the 

basis, which has the effect of using ultimate value. 

Note: 

If you select the normal 
distribution for the 
simulation of a priori 
ultimate values it is 
possible to simulate a 
negative value. Negative 
iterations are possible as 
no zero limitation is 
applied to this part of the 
iteration process! 

Image 5-6: 

Cape Cod model 
assumptions 
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2. Future Incrementals – When this option is set to Deterministic, the total Cape Cod unpaid 

amounts are converted to the incremental values using the sequential unpaid factors as described 

in Section 3 and illustrated in Appendix A. When this option is set to Statistical, the total Cape Cod 

unpaid amounts are converted to the incremental values using a Bayesian weighting of the 

column sums and row sums. 

3. Use Trend Rates – A key feature of the deterministic Cape Cod method is the ability to “trend” the 

losses to remove the effect of inflation and adjust the losses to a common level. By selecting Yes 

for this option, the model will convert the annual Loss Trend Rates into “ultimate earned trend 

factors” and apply them within the algorithm of the Cape Cod model. If No is selected for this 

option, the trend factors are all set to 1.000 (in effect setting the Loss Trend to zero). To trend the 

losses, each factor is a cumulative multiplication of the later years (e.g., the factor for 2010 is 2010 

x 2011 x 2012 x etc.) with the calculation of each individual year factor, except the current year, 

being: 

(1 + Loss Trend Factor / 12) ^ months in exposure period 

The current year factor is calculated using: 

(1 + Loss Trend Factor / 12) ^ (months in exposure period / 2) 

EXAMPLE 

ACCIDENT YEAR LOSS TREND TREND INDEX CUMULATIVE 

2009 7.0% 1.0723 1.2961 

2010 5.0% 1.0512 1.2087 

2011 5.0% 1.0512 1.1499 

2012 6.0% 1.0617 1.0939 

2013 6.0% 1.0304 1.0304 

 

4. Decay Rate – The Decay Rate is used to “credibility weight” the adjusted loss ratio for each 

accident year with the other years within the Cape Cod methodology and must be between 0% 

and 100%. Each year’s weighted loss ratio is calculated by weighting the loss ratios of that year 

and the years around it. The weight for each year is calculated using the Decay Rate raised to the 

power of N, with N being equal to the absolute difference in number of years between the 

primary accident year and secondary accident year. Loss ratios in closer years get a higher weight 

than those in years further away. A Decay Rate of 100% effectively gives every accident year equal 

weight, while a Decay Rate of 0% means that each accident year effectively stands on its own with 

all other accident years given zero weight. 

If you have not done so, save your file at this point. 

STEP 3:  EVALUATE YOUR DATA WITH THE MODEL’S DIAGNOSTICS 

The standard ODP bootstrap model is essentially based on a traditional chain ladder development 

method. In order to increase the model’s predictive power, the data must be consistent with the 

assumptions that are inherent in the deterministic form of the model (or the model should be adjusted 

to be consistent with the data). Specifically: 

 the expected value of the incremental losses to emerge in the next period is proportional to the 

total losses emerged to date, by accident year;  

 the columns of incremental losses are independent (except for observations in the same accident 

year); and  

Note: 

The Paid model options 
should be set up to achieve 
the desired Paid model 
results and should not be 
“ignored” when setting up 
an Incurred model. For 
example, if the Paid tail 
factor should be 1.10 and 
you simply “ignore” it and 
set it to 1.00, then not 
enough of the paid 
incremental values will be 
included in the “unpaid 
incurred” amounts and the 
model results will diverge. 
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 the variance of the next incremental observation is a function of the age and the cumulative 

losses to date.25 

The diagnostic output includes a variety of tables and graphs to help the user test these assumptions 

and then to adjust the model options to improve the statistical fit of the model to the data.  

First, from the HOME ribbon, click on the RUN DIAGNOSTICS icon to populate the tables and graphs. In an 

iterative process, you will now want to analyze the diagnostic output, make adjustments to the model 

options (described above), and then RUN DIAGNOSTICS again to update the diagnostics results. An 

additional part of this iterative process is to click on the RUN SIMULATIONS icon from the HOME ribbon to 

run the simulations for the segment you are analyzing. This will allow you to review the model output 

for the segment, make adjustments to the model options and then either run diagnostics or 

simulations again until you have optimized the model. 

In the Navigation Pane, select the STOCHASTIC | ODP BOOTSTRAP | PAID LOSS | DIAGNOSTICS collection. The 

DIAGNOSTICS collection includes a Residual Graphs window (as illustrated in Graph 5-1 prior to 

heteroscedasticity adjustment). These graphics show plots of the residuals (from Image 5-12) against 

the development, accident, and payment periods, as well as a plot of the residuals vs. the fitted (i.e., 

predicted) values. These will help you identify trends or other features in your data that may not be 

completely modeled by the chain ladder approach, thus indicating that the ODP bootstrap predictions 

from the data may be less than optimal. Particularly important are the identification of 

heteroscedasticity and outliers. 

 

 

 

25 For some forms of the chain-ladder model, another assumption is that the error terms (residuals) are normally distributed. An 
advantage of the ODP bootstrap model is that this assumption is not a requirement since the model will simulate using the actual 
distribution of the residuals, whether they are normally distributed or not. However, since the ODP bootstrap simulations are based on 
the chain-ladder, this still means that the results may not be optimal. 

Graph 5-1: 

Plots of Residuals Prior to 
Heteroscedasticity 
Adjustment 
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STEP 3A:  IDENTIFY AND ADJUST FOR POTENTIAL HETEROSCEDASTICITY 

For illustration purposes, we are using the BI data in the ODP_Mack_Hayne.apj file that is included 

with the system files in the C:\Users\username\Documents\Milliman\Arius\DemoFiles directory, where 

the username is your Windows user name.  

In the ODP bootstrap model, residuals are resampled with replacement–that is, they are taken from 

any location in the residual triangle, and placed in another random location to form a sample triangle. 

Therefore, the residuals should all be independent, identically distributed random numbers. 

Heteroscedasticity occurs when the residuals are not identically distributed. Usually, we see that some 

groups of residuals have different standard deviations from other groups. Arius allows you to adjust for 

this. 

The adjustment for heteroscedasticity is made by focusing on the plot by development period in Graph 

5-1. Looking at the Plot of Residuals against Development Period and the Residual Relativities table 

(illustrated in Graph 5-2 using the factors shown in Image 5-9) you can identify columns with a similar 

dispersion of residuals. By grouping similar columns together into (potentially) several groups 

(“heteroscedasticity groups”), you help the model adjust and account for this heteroscedasticity. 

Using the Heteroscedasticity table (illustrated in Image 5-9) you can “manually” identify the various 

groups, then use RUN DIAGNOSTICS and the system will return a new adjusted set of plots and statistics 

throughout the DIAGNOSTICS collection. Alternatively, you can use SUGGEST HETERO GROUPS from the ribbon 

to run the system algorithms for finding groups. Either way, after you group similar residuals together, 

the modeling goal is to adjust the residuals to a common standard deviation so that they are identically 

distributed. 

 

 

 

Graph 5-2: 

Plots of Residual 
Relativities Prior to 
Heteroscedasticity 
Adjustment 

Image 5-9: 

Illustration of Suggested 
Heteroscedasticity Groups 

Note: 

The final development 
period, which has no 
residual on the scatter 
plot, must be included in 
one of the groups for the 
model to run. This final 
period can never be its own 
hetero group. As a general 
rule, including it in the 
group with the narrowest 
dispersion (group 1 in this 
example) will be a logical 
choice, but this is not 
mandatory. The final 
development period group 
is also important since it 
will also be used for all tail 
factor periods. 
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For example, the optimization algorithm used the data from Graph 5-1 to select the hetero groups 

shown in Image 5-9. While this example shows the “optimal” groups26, the process of finding the 

optimal groupings involves trying different groups and comparing the other diagnostics. Indeed, 

comparing the two sets of relativities in Graph 5-2 shows how different groups are possible and the 

solution is not obvious. The goal of either the manual iterative process or optimization algorithm is to 

find the fewest number of groups that result in the “best” diagnostics.27 

Once the groups are entered in the Group Number row of the Heteroscedasticity table (as illustrated 

in Image 5-9), the numbers in the blue circles above the development columns in the Plot of Residuals 

against Development Period will change to match the numbers in the Heteroscedasticity table (as 

illustrated in Graph 5-3).  

Rather than enter the hetero group numbers manually, you can click on the Select Hetero Groups 

Graphically buttons at the bottom of either the Residual Graphs window or the Heteroscedasticity 

table. 

After the hetero groups are entered, use RUN DIAGNOSTICS and the system will return an adjusted set of 

plots in the DIAGNOSTICS collection. For example, the plots in Graph 5-3 take into account the effect of 

the groupings made in Image 5-9. Compare the adjusted data plot in Graph 5-3 to the unadjusted data 

in Graph 5-1 and note how the adjusted residuals are more “consistently” and randomly dispersed. 

 

 

 

26 For smaller triangles the Suggest Hetero Groups algorithm can search through all of the possible combinations of groups to find the 
one with the best statistics and, thus, it could be considered optimal. For larger triangle sizes the number of combinations become 
exponentially too large to check in a reasonable time so other algorithms are used to suggest a solution in a reasonable amount of 
time. 

27 Statistically, the principle of parsimony suggests that the simpler the model (i.e. fewer parameters) the better, all else being equal. 

Graph 5-3: 

Plots of Residuals after 

Heteroscedasticity 

Adjustment 
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In addition to reviewing the Residual Graphs before and after the heteroscedasticity adjustment, the 

plots of Residual Relativities can also be similarly compared. Indeed, comparing Graph 5-4 to Graph 5-

2 shows more consistency in the residual relativities.  

 

 

While it is tempting to use more hetero groups to force even more consistency of the residuals in 

Graph 5-3 and relativities in Graph 5-4, this will generally be done at the expense of adding more 

groups (more model parameters) than are optimal. This is not to say that trying other hetero groups is 

never justified, just that additional groups may not be quite as “optimal” statistically as those in the 

Suggested Groups row.28 

Before moving on, it is useful to note the values in the rows of the Heteroscedasticity table shown in 

Image 5-9. More specifically: 

 StDev Rel Prior – this is the standard deviation of the residuals (illustrated in Graphs 5-1 and 5-2), 

by development period, divided by the largest standard deviation of all the development periods. 

That is, the period with the largest standard deviation will show a 1.000 here. 

 Range Rel Prior – this is the difference between the maximum and minimum of the residuals 

(illustrated in Graphs 5-1 and 5-2), by development period, divided by the largest range of all the 

development periods. That is, the period with the largest range will show a 1.000 here. 

 StDev Rel Post – this is the same as StDev Rel Prior (illustrated in Graphs 5-3 and 5-4), except the 

values are calculated using residuals after the heteroscedasticity adjustment. 

 Range Rel Post – this is the same as Range Rel Prior (illustrated in Graphs 5-3 and 5-4), except the 

values are calculated using residuals after the heteroscedasticity adjustment. 

 Group Number - you can manually identify groups of development periods that appear to have 

similar standard deviations, by using a different number for each group. This is the set of 

groupings that the model will actually use to adjust for heteroscedasticity in its simulations. The 

numbers must be a continuous set of positive integers which includes zero. As a default, a zero 

 

28  For larger triangle sizes it is possible that the algorithm did not find the true optimal solution, although it should be very close. For all 
triangle sizes, different groupings might make more sense based on the analyst’s understanding of the data and what might be driving 
differences in variance by development period, so statistics from “logical” groups can be compared to statistics from “optimal” groups. 

Graph 5-4: 

Plots of Residual 

Relativities after 

Heteroscedasticity 

Adjustment 
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will be entered in each cell so that the model will not use any hetero groups in the initial 

diagnostic calculations (shown in Image 5-9).29 

 Suggested Group – these are the hetero groups returned when using SUGGEST HETERO GROUPS. This 

goes through an optimization routine that finds the optimal balance between getting identically 

distributed random variables, and not having too many hetero group parameters.30 If you elect to 

use these recommendations in your model, you can simply copy the figures in this row and paste 

them into the Group Number row directly above. 

 Adj. Factor – these are the resulting hetero group adjustment factors that will be used in the 

simulation process. 

The remaining DIAGNOSTIC collection windows include the Adjusted Triangle, Residuals and Age-to-Age 

Factors tables. If you have checked the Enable Exposure Adjustment option, then the incremental 

values will be divided by the exposures in each period. If you have stub period data (see Section 8) then 

the last diagonal will be grossed up to a full period. Otherwise, this will simply be the difference in the 

cumulative values you entered (as illustrated in Image 5-1). 

The next diagnostic output is the Age-to-Age Factors table (as illustrated in Image 5-10). These factors 

are essentially calculated as if from a deterministic analysis, except that exposure adjustments and/or 

stub period adjustments for the last diagonal are also included. In other words, the factors are 

calculated after cumulating the adjusted incremental values. 

 

 

In addition to the age-to-age factors, this table also includes the Averages for various volume weighted 

averages of the age-to-age factors (including exposure and/or last diagonal adjustments if 

appropriate). The Selected average factors are based on the Use Last X Periods model option, which 

defaults to a value of 99 periods (as illustrated in Image 5-4 above). 

With the average ratio parameters selected, the next diagnostic output is the standardized Pearson 

residuals shown in the Residuals table. These residuals are the basis for the model’s simulations. The 

calculations for the residuals are described in Appendix A, although the residuals will be based on the 

data adjusted for number of periods in the average, exposures and/or stub periods (as illustrated in 

Image 5-11). The residuals shown in this table will be prior to any hetero group adjustments.  

 

29 More technically, a zero for each development column is required so that the model will group all data into a single group. 

30 For a more detailed discussion of the issues related to testing hetero groups and a comparison of using manual adjustments compared 
to the optimization algorithm see Appendix B. 

Image 5-10: 

Age-to-Age Factor Triangle 
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STEP 3B:  IDENTIFY AND EXCLUDE OUTLIERS 

The next DIAGNOSTICS window, Normality, will help you judge the general improvement in the model as 

you change the model options. For example, look at Graph 5-5 below which corresponds to the graphs 

shown above in Graph 5-1. 

 

 

 

As noted in Appendix B, the changes in the P-Value, R2, AIC and BIC values under the Normality (Q-Q) 

Plot and Box-Whisker Plot are a useful guide. In Graph 5-5 you can see all of these values prior to 

adjusting for heteroscedasticity. You can also review these graphs before and after other changes to 

the model options, but the hetero adjustment will usually have the most significant impact on these 

values. 

In Graph 5-6 below the Normality (Q-Q) Plot and Box-Whisker Plot are shown after the 

heteroscedasticity adjustment, and you can see the improvement in the test values, which indicate 

that the model fit has been improved. These plots are also designed to help you identify possible 

outliers. For example, one of the outliers was “removed” by the hetero adjustment in Graph 5-3 but, 

more importantly, the plot is more symmetrical. 

Image 5-11: 

Standardized Pearson 
Residuals 

Graph 5-5: 

Normality & Box-Whisker 
Plots before 
Heteroscedasticity 
Adjustment 
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As noted earlier, it might be reasonable to remove outliers before or after adjusting for 

heteroscedasticity. However, quite often you may find that there are multiple outliers identified in the 

Box-Whiskers plot, which generally indicates either skewness in the data or a heteroscedasticity 

problem. In the latter case, adjusting for heteroscedasticity will often “fix” the outlier problem so 

finding the optimal hetero groups before you remove any outliers will provide better results. On the 

other hand, skewness may be a feature of the data that you might not want to remove by eliminating 

outliers. 

 

 

When you do want to “remove” an outlier from the data, the procedure for doing so is to click on a 

dot(s) in any of the plots in the Residual Graphs window (as illustrated in Graph 5-7) and this will 

automatically identify it (them) with a one (“1”) in the corresponding cell(s) in the Outliers triangle (as 

illustrated in Image 5-12). 

Graph 5-6: 

Normality & Box-Whisker 
Plots after 
Heteroscedasticity 
Adjustment 

Note: 

Removing outliers should 
be done with caution as 
this will usually reduce the 
“extremes” of the resulting 
bootstrap model 
distribution. 

Graph 5-7: 

Illustration of Outlier 
Selection, prior to using 
RUN DIAGNOSTICS 
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After the outlier(s) have been identified in this manner, use RUN DIAGNOSTICS again to update the tables 

and graphs. After the tables and graphs have been updated, the selected outlier(s) will no longer be 

visible in any of the graphs (as illustrated in Graph 5-8), but you can still see which cell(s) have been 

eliminated from the simulation (i.e., given no weight in the model) by opening the Outliers table 

(Image 5-12). To restore an outlier to inclusion in the model, you must change the 1 in the Outliers 

table to a zero (“0”) and use RUN DIAGNOSTICS again. 

 

 

 

Image 5-12: 

Outliers triangle with one 
outlier selected 

Graph 5-8: 

Illustration of Outlier 
Selection, after using RUN 

DIAGNOSTICS 
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STEP 3C:  DEFINE HOW TO HANDLE TAIL FACTORS 

After you a better sense from the diagnostics about how your data fits the requirements of the model, 

and before you run your model simulations, the last consideration that is common to all deterministic 

methods is the potential inclusion of a tail factor. In the Navigation Pane, select the STOCHASTIC | ODP 

BOOTSTRAP | PAID LOSS | DIAGNOSTICS collection. You can then open the Tail Factor window as illustrated in 

Image 5-13. 

 

 

1. Enable Tail Factor Distribution – The system provides two options: 

 Check this option and the system will select a tail for each iteration based on your supplied 

mean, standard deviation and distribution type; or 

 Uncheck this option and the system will use your Mean tail factor amount in each simulation. 

2. Tail Factor Distribution – If you check Enable Tail Factor Distribution (above), you can select from 

a lognormal or normal distribution from which to simulate the tail factor. 

3. Limit Tail Factor with Min/Max – If you choose to randomly select a tail factor, you can also 

provide specific minimums and/or maximum amounts for the model to use. If you provide 

min/max levels, and check this option, any random amounts outside these levels will be limited to 

these levels. An example might be to limit factors to a minimum of 1.00. 

4. Extrapolate Tail Factor – One of the outputs of the simulation is an estimate of the cash flows 

resulting from the estimated unpaid amounts. These can be presented two ways: 

 If you check this option, the future payments related to the tail will be extended out beyond 

the development of the triangle itself; or   

 If you uncheck this option, the future payments related to the tail are all accumulated into 

one final period in the Estimated Cash Flow exhibit. 

The future cash flows related to the tail are extrapolated into the future based on the Number of 

Periods in Extrapolation field and using the value entered into the Exponential Decay Factor field. 

This is important if you want a meaningful Estimated Cash Flow table and will also affect the 

discounted results. 

Image 5-13: 

Tail Factor assumptions 
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5. Number of Periods in Extrapolation – This is an estimate of how many future periods are 

assumed to be in the tail factor, used as noted above to extrapolate the Cash Flows to future 

periods.  

The incurred selection will effectively be converted to the number of periods for the paid 

selection. For example, if the paid model extrapolates 5 years and the incurred model is set to not 

extrapolate, the simulated paid values will be adjusted to sum to the same ultimate values as the 

incurred values and the extrapolation for an additional 5 years will be included. Alternatively, if 

the incurred model extrapolates 5 years and the paid model is set to not extrapolate, the 

adjustment of the paid simulations will include zeroes beyond the end of the triangle since no 

payment pattern is simulated beyond the end of the triangle. 

6. Tail Factor – The parameterization of the tail factor has several related parts (as illustrated in 

Image 5-13): 

 Mean – Enter your best estimate of a tail factor. 

 Standard Deviation – If you have checked the Enable Tail Factor Distribution option, enter 

an estimate of the standard deviation of the tail factor. 

 Suggested Std Deviation: Tail Factor – After you RUN DIAGNOSTICS, suggested parameters for 

the standard deviation of the tail factor will be shown here based on two different methods: 

 Resampling – this method extends the residual resampling that is used for the body of 

the triangles into the tail of the triangle. 10,000 resampling iterations are done and the 

implied standard deviation is shown here. 

 Murphy – this method uses your a priori loss ratio input (from Model Assumptions | 

Bornhuetter-Ferguson) and Ultimate Premiums (or Exposures) and calculates the 

selected ultimate loss for each accident year. The implied tail factor is derived from the 

difference between the chain ladder ultimate, excluding the tail factor, and the user’s 

selected ultimate for each year. The standard deviation from this set of implied tail 

factors is shown here. 

 Min / Max – If you have checked the Limit Tail Factor with Min/Max option, select a 

minimum and/or maximum for your tail factor. 

 Percentile – The 95% confidence interval for the tail factor distribution is shown. Similar to 

the confidence interval for the Bornhuetter-Ferguson a prior assumption, you can change the 

percentiles in the heading to see a different interval. 

 Exponential Decay Factor – When extrapolation is turned on, one minus this factor is 

multiplied times the tail factor for each period in the extrapolation. Since the tail factor is a 

factor to ultimate, each successive factor is a new factor to ultimate one period later and 

dividing each factor by the next factor results in incremental age-to-age factors for the tail (as 

illustrated in Image 5-14, with a Tail Factor = 1.1, Decay Factor = 35.0% and Number of Years 

= 10). 
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7. Tail Factor Standard Deviations – In addition to the average age-to-age factors (illustrated in 

Image 5-10 above), the standard deviations of the Age-to-Age factors are shown in the Data 

Triangle row (illustrated in Image 5-13 above). After you run the simulations, the Sampled Data 

row of this table is also shown, which is based on all of the simulated data. Both of the standard 

deviation rows can be used to help you select a standard deviation for the tail factors. 

 

In addition to the model diagnostics described above, the results output also has diagnostic features. 

Thus, running the model using RUN SIMULATIONS, reviewing the model output and adjusting model 

parameters and assumptions is part of the diagnostic process. Reviewing the model output is discussed 

in more detail in the remainder of this Section. 

Tail Factor Extrapolation

Period TF TF + 1 TF + 2 … TF + n-1

Extrapolation TF / TF + 1 TF + 1 / TF + 2 TF + 2 / TF + 3 … TF + n-1

Cumulative TF(Mean)
1 + [("TF" - 1)

x (1 - Decay)]

1 + [("TF + 1" - 1)

x (1 - Decay)]
…

1 + [("TF + n-2" - 1)

x (1 - Decay)]

Period TF TF + 1 TF + 2 … TF + 10-1

Extrapolation 1.1000 / 1.0650 1.0650 / 1.0423 1.0423 / 1.0275 … 1.0013

Cumulative 1.1000
1 + [(1.1000 - 1)

x (1 - 0.35)]

1 + [(1.0650 - 1)

x (1 - 0.35)]
…

1 + [(1.0021 - 1)

x (1 - 0.35)]

Period TF TF + 1 TF + 2 … TF + 9

Extrapolation 1.0329 1.0218 1.0144 … 1.0013

Cumulative 1.1000 1.0650 1.0423 … 1.0013

Image 5-14: 

Tail Factor Extrapolation 
Example with Formulas 
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SUMMARY OF OUTPUT 

The results for each model are shown in their own collection. For example, in the Navigation Pane, 

select the STOCHASTIC | ODP BOOTSTRAP | PAID LOSS | CHAIN LADDER collection to view all of the simulation 

results for the ODP Paid Chain Ladder model. For the weighted results, there is an additional table and 

graph which summarize the individual models. 

 

Estimated Unpaid Mean, Standard Error, Coefficient of 
Variation, Min, Max and Percentiles. 
Total Distributions and TVaRs. 

 

Total Unpaid Distribution Histogram and kernel density of total 
unpaid. 

 

Estimated Cash Flow Future calendar period payments. 

 

Estimated Run-off Total unpaid as future calendar periods 
are removed. 

 

Estimated Loss Ratios Time zero to ultimate loss ratios. 

 

Estimated CDR Claim Development Results (for Time 
Horizon options only). 

 

Incremental Values Mean and standard deviation values for 
each incremental cell, historical and 
future. 

 

Deterministic Calculations Deterministic Unpaid, Reconciliation 
and Selected Mean Unpaid (portions 
only with Weighted Results) 

 

Summary of Distributions Histogram distribution for each model 
and weighted results. (only with 
Weighted results) 

 

Summary of Results by 
Model 

Estimated Unpaid, Coefficient of 
Variation and Mean Loss Ratios for all 
models. (only with Weighted results) 

 

The flow of the analysis of the results will usually start by reviewing the results of each model 

individually, then selecting a weighted “best estimate.” Thus, we will discuss how to review results for 

a model first, before examining how to weight the results of different models. 
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STEP 4:  EVALUATE THE OUTPUT FOR EACH MODEL 

After the model diagnostics have been set up and reviewed, the next step in the evaluation of each 

model is to use RUN SIMULATIONS to run the simulations for the segment you are analyzing. To illustrate 

the diagnostic elements of the simulation output, we will review the results for the paid chain ladder 

model. 

Estimated Unpaid Results 

The Unpaid Table illustrated in Table 5-1 was simulated prior to any hetero adjustment. The first 

diagnostic element of the Unpaid Table can be seen by reviewing the Standard Error and Coefficient of 

Variation columns. As general rules, the standard error should go up as you move from the oldest years 

to the most recent years and the standard error for the total of all years should be larger than any 

individual year. In Table 5-1, the standard errors follow these general rules. For the coefficients of 

variation, they should go down when moving from the oldest years to the more recent years and the 

coefficient of variation for all years combined should be less than for any individual year.31  Except for 

the 2013 year, the coefficients of variation in Table 5-1 also follow the general rules. 

 

 

The reason the standard errors (value scale) tend to go up is that they tend to follow the magnitude of 

the mean or expected value estimates. The reason the coefficients of variation (percent scale) tend to 

go down has more to do with the independence in the incremental claim payment stream. For the 

oldest accident year, there is typically only one (or a few) incremental payment(s) left so the variability 

of that payment(s) is (almost) fully reflected in the coefficient. For the most current accident year, the 

“up and down” variations in the future incremental payment stream can offset each other thus causing 

the total variation to be a function of the correlation between each incremental payment for that 

accident year (i.e., the incremental payments are assumed independent). 

The coefficient of variation rules noted above are a reflection of the step 7’s described in Section 3 

(and Appendix A), in the sense that they describe the process variance in the model. While the 

coefficients of variation should go down, if they do start going back up in the most recent year(s), as 

illustrated in Table 5-1 for 2013, then this could be the result of the following issues: 

 

31 These standard error and coefficient of variation rules are based on the independence of the incremental process risk and assume that 
the underlying exposures are relatively stable from year to year – i.e., no radical changes. In practice, random changes do occur from 
one year to the next which could cause the actual standard errors to deviate from these rules somewhat. In other words, these rules 
should generally hold true, but are not considered hard and fast rules in every case. Strictly speaking, the total all years rules assume 
that the individual years are not positively correlated. 

Note: 

For policy period data or 
incomplete accident period 
data, the unpaid data in 
the last row(s) will be 
reduced to only include 
earned exposures. 

Table 5-1: 

Estimated Unpaid Model 
Output 

Note: 

Caution should be 
exercised in the 
interpretation and 
adjustments for increases 
in the coefficient of 
variation in recent years. 
While keeping the theory 
in mind is appropriate, this 
must be balanced with the 
need to keep from 
underestimating the 
uncertainty of the more 
recent years. 
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1. The parameter uncertainty tends to increase when moving from the oldest years to the more 

recent years as more and more parameters are used in the model. In the most recent year(s), the 

parameter uncertainty could be “overpowering” the process uncertainty, causing the coefficient 

of variation to start going back up. At the very least, the increasing parameter uncertainty will 

cause the rate of decrease in the coefficient of variation to slow down. 

2. If the increase in the most recent year(s) is significant, then this could indicate that the model is 

overestimating the uncertainty in those years. If this is the case, then an adjustment to the model 

parameters may be needed (e.g., limit incrementals to zero, etc.) or you may need to use a 

Bornhuetter-Ferguson or Cape Cod model instead of a Chain Ladder model. 

While we mentioned the rules for the standard error and coefficient of variation for the total of all 

years, it is also worth noting that in addition to the correlation (independence) within each accident 

year the total of all years also includes the impact of the correlation (independence) between accident 

years. In essence, when one or more accident years are “bad” we do not expect all accident years to be 

“bad.” To see this impact, you can add the accident year standard errors and note that they will not 

sum to the standard error for all years combined.32 

The next diagnostic element in the Unpaid Table is the Minimum and Maximum columns. In these 

columns, the smallest and largest values, respectively, from among all iterations of the simulation are 

displayed. These values can be reviewed judgmentally to make sure that they are not outside the 

“realm of possibility.” If they do seem a bit unrealistic then they could indicate the need to review the 

model options. For example, the presence of negative numbers might lead to changing one or both of 

the options which limit incremental values to zero. Sometimes “extreme” outliers in the results will 

show up in these columns and may also distort the histogram (discussed later in this section). 

Risk Measures 

Also included in Table 5-1, notice that there are three rows of “Percentile” numbers and then four 

rows of TVaR numbers at the bottom of these tables under each of the percentile columns. For the 

three “Percentile” rows, the normal, lognormal and gamma distributions, respectively, have been fit to 

the Total unpaid claim distribution. The fitted mean, standard deviation and selected percentiles are 

shown under the Mean, Standard Error and Percentile columns, respectively, so that the smoothed 

results can be used to judge the quality of fit for each distribution or other purposes such as 

parameterizing a DFA model or using smoothed results in the tail of the distribution. 

The Tail Value at Risk (TVaR)33 is the average of all of the simulated values equal to or greater than the 

percentile value. For example, in Table 5-1 the 75th percentile value for the total unpaid for all accident 

years combined is 1,033,692 and the average of all simulated values that are greater than or equal to 

1,033,692 is 1,063,010. The “Normal TVAR,” “Lognormal TVaR” and “Gamma TVaR” rows are 

calculated the same way, except that instead of using the actual simulated values from the model the 

respective fitted distributions are used in the calculations. 

To interpret the TVaR numbers, the question we are trying to answer with a TVaR number is “if the 

actual outcome does exceed the X percentile value, on average how much might it exceed that value 

by?”  This is an important question related to risk based capital calculations and other technical aspects 

of enterprise risk management, although a more complete discussion is beyond the scope of this 

manual. It is worth noting, however, that the purpose of the normal, lognormal and gamma TVaR 

 

32 Likewise, the minimum, maximum and each of the percentile columns will not sum to the total for all years combined. In contrast, 
adding the mean values for each accident year will sum to the total for all years combined. 

33 The Tail Value at Risk is sometimes referred to as the Conditional Tail Expectation. 
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numbers is to provide “smoothed” values in the sense that some of the random noise is kept from 

distorting the calculations. 

Total Unpaid Distribution Graph 

The final model output from the simulations for each model is a histogram of the estimated unpaid 

amounts for the total of all accident years combined, as illustrated in Graph 5-9. The Unpaid Graph, or 

histogram, is created by dividing the range of all values from the simulation (using the maximum and 

minimum values) into one hundred “buckets” of equal size and counting the number of simulations 

that fall within each “bucket.” Dividing by the total number of simulations (10,000 in this case) results 

in the frequency or probability for each “bucket” in the graph. 

Since the simulation results often look “jagged” (as they do in Graph 5-9) a kernel density function is 

also used to calculate a “smoothed” line fit to the histogram values. The kernel density distribution is 

represented by the blue line in Graph 5-9.34 

 

 

When you initially parameterize and run the model, you may find the resulting graph to be extremely 

narrow – almost a straight line. This is normally caused by a handful of extreme iterations. Many of the 

percentile results in the Unpaid Table may still appear reasonable, but it is still important to remove 

these extreme iterations since they will unduly affect your mean result. One of the most common 

causes of the extreme iteration is negative incremental values which can sometimes also result in an 

unrealistically high age-to-age factor. Thus, checking the Limit Incremental to Zero constraints may 

help remove these extreme iterations. 

Estimated Cash Flow Results 

In addition to the results by accident year, we can also review the model output by calendar year (or by 

future diagonal) in the Cash Flow table as illustrated in Table 5-2. Comparing Table 5-2 to 5-1, notice 

 

34 In simple terms, a kernel density function can be thought of as a weighted average of values “close” to each point in the “jagged” 
distribution with progressively less weight being given to values the further they are from the point being evaluated. For a more 
detailed discussion of kernel density functions, see Wand & Jones, “Kernel Smoothing,” Chapman & Hall. 1995. 

Graph 5-9: 

Total Unpaid Distribution 
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that the Total row is identical since the total is the same whether you add the parts horizontally or 

diagonally. Similar diagnostic issues can be reviewed in this table, except that the relative values of the 

standard errors and coefficients of variation move in the opposite direction for calendar years 

compared to accident years. This should make intuitive sense as the “final” payments projected the 

farthest out into the future should be the smallest yet relatively most uncertain. 

 

Estimated Unpaid Claim Runoff Results 

Another report similar to the Cash Flow table is the Run-off table. Rather than looking at individual 

diagonal results, the Run-off table starts with the total unpaid results and then looks at how the total 

unpaid will decrease over time as successive diagonals are removed, as illustrated in Table 5-3. 

Comparing Table 5-3 to 5-1 & 5-2, notice that the first row of Table 5-3 is identical to the Total rows in 

Tables 5-1 and 5-2. Each successive row in Table 5-3 is then the total of the remaining diagonals. 

 

Estimated Ultimate Loss Ratio Results 

The next collection table shows the ultimate Loss Ratios by accident year as illustrated in Table 5-4. If 

there are no earned premiums or ultimate premiums input into the model, then this table will not be 

filled in since the model cannot calculate a loss ratio without the premium information.35 

 

 

 

35 Earned premiums are used as the denominator of the loss ratios. However, if earned premiums are not input then earned premiums 
are estimated from the ultimate premiums. 

Table 5-2: 

Estimated Cash Flow 
Model Output 

Table 5-3: 

Estimated Unpaid Claim 
Run-Off Model Output 

Note: 

For policy period data or 
incomplete accident period 
data, the unpaid data in 
the last row(s) will be 
reduced to only include 
earned exposures. 
However, since the earned 
exposures are divided by 
the Earned Premium to 
calculate the loss ratios we 
have a match of losses to 
premium. 

Table 5-4: 

Estimated Loss Ratio 
Model Output 
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Unlike the Unpaid, Cash Flow and Run-off tables, the values in the Loss Ratios table are calculated 

from all simulated values, not just the values beyond the end of the triangles. In other words, since the 

simulated sample triangles represent other possibilities of what could have happened in the past and 

the “squaring of the triangle” and process variance represent what could happen as those other 

possible past values play out into the future, we have enough information to estimate the complete 

variability in the loss ratio from day one in each accident year until all claims are completely paid and 

settled.36 

Because we are using all simulated values, the standard errors in Table 5-4 should be proportionate to 

the means while the coefficients of variation should be relatively constant by accident year. 

Diagnostically, the increases in standard error and coefficient of variation for the latest few years are 

consistent with the reasons cited earlier for the Unpaid Table. For the Chain Ladder and Cape Cod 

models, this table can also help parameterize the a priori means and coefficients of variation for the 

Bornhuetter-Ferguson models. 

Estimated Claim Development Result 

The next collection table shows the CDR or Claim Development Result. When the Bootstrap Option in 

the OPTIONS tab of the MODEL OPTIONS dialog is set to Ultimate then this table will be blank, since it is 

only calculated when one of the time horizon options is used. Thus, when either the Time Horizon – 

ODP Process or Time Horizon – ODP Residual option is selected (which will activate the algorithms 

described in Section 3 and Appendix A) then this table will be created as illustrated in Table 5-5 for the 

ODP Residual option. 

 

 

The output for this table is calculated by subtracting the mean of the Unpaid Table when the Ultimate 

option is selected from each of the iterations when one of the time horizon options is selected. For 

example, the Unpaid Table for the ODP Residual option is shown in Table 5-6. Subtracting the Total 

Mean from Table 5-1 of 1,000,224 from the Total Mean from Table 5-6 of 999,463, results in the Total 

Mean for Table 5-5 of (760). The CDR is used to calculate the required capital for Solvency II 

regulations in Europe. 

 

36 If we are only interested in the “remaining” volatility in the loss ratio, then the values in the Estimated Unpaid table can be added to 
the cumulative values in the data input table and divided by the premiums. 

Table 5-5: 

Estimated Claim 
Development Result 
Output 
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Estimated Incremental Results 

The next collection table is designed to help you take a deeper look at the simulations and to 

understand the reasons for increases in the coefficients of variation (illustrated in Tables 5-1 and 5-4). 

They show the mean and standard deviations, respectively, by accident year by incremental period. As 

illustrated in Table 5-7, both the Mean and Standard Deviation Incrementals can be reviewed down 

each column or across each row to look for any irregularities in the expected patterns. 

As you can see by looking down the 24 and 36 month columns in Table 5-7, it appears as though there 

might be “too much” variability in future incremental values for years 2012 and 2013 – i.e., those 

“future” values do not appear consistent with the values in the prior years. This does not imply that the 

“historical” values are correct and that the “future” values are overstated, just that they are not always 

consistent. These inconsistencies appear to be impacting both the unpaid and loss ratio results for 

2012 and 2013. 

 

Table 5-6: 

Estimated Unpaid Model 
Output for ODP Residual 
option 

Table 5-7: 

Estimated Incrementals by 
Accident Year by 
Development Period 
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Deterministic Calculations 

In addition to the tables displaying results for the estimated distributions, the collection also contains a 

table showing the deterministic results for the same assumptions for each model. For example, the 

Deterministic Calculations table is illustrated in Table 5-8 for the Paid Chain Ladder model. The results 

for this table are calculated based on one iteration of the model with all stochastic elements turned 

off. 

 

 

Results of Other Models 

Thus far we have only reviewed results for the Paid Chain Ladder model. By selecting the other models 

from either the MODEL OPTIONS or CHOOSE MODELS icon and then using RUN SIMULATIONS to run the 

simulations again, you can complete the iterative process of reviewing the results for each model and 

adjusting model parameters as necessary. Since the tables and graphs described for Step 4 in this 

Section are the same for each model there is no need to repeat all of the previous discussion. 

However, it is useful to look at a couple of the models to compare some aspects of the results. 

Starting with the Incurred Chain Ladder, Table 5-9 illustrates how the estimated unpaid claim 

distribution might differ for an incurred model compared to a paid model. Comparing these results 

with the results in Table 5-1 for paid data, the first thing you should notice is that the mean unpaid 

results are lower. This is consistent with differences in deterministic paid and incurred chain ladder 

methods. It is also worth noting that incurred results will not always be less than paid results – it is only 

the fact that the results diverge that is consistent with deterministic methods, not the direction of the 

divergence. 

 

Table 5-8: 

Deterministic Calculations 

Table 5-9: 

Estimated Unpaid Model 
Output – Incurred Chain 
Ladder 
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The next difference is the standard errors which are larger for the incurred model. The differences in 

the standard errors are a function of the residuals for each model, which in turn are a function of the 

underlying data and the reserving philosophy of the company.37  Thinking about how to measure risk 

(as described in Section 1), these differences could impact the weights given to each model when 

determining the “best” distribution. Finally, the coefficient of variation is decreasing and then increases 

in the latest two years similarly to the paid model. 

 

 

The Paid Bornhuetter-Ferguson model illustrated in Table 5-10 provides another brief comparison to 

the Paid Chain Ladder model. For the Paid Bornhuetter-Ferguson model the mean results are slightly 

higher than the Paid Chain Ladder model results, but the standard error by year is reasonably close to 

the standard error for the Paid Chain Ladder model except for 2013 which is quite a bit less, causing 

the total standard error to be lower. The most interesting difference illustrated in Table 5-10 is the 

shape of the coefficients of variation, which consistently decrease (i.e., they do not increase in the last 

two years). This is actually a more common feature of both the Bornhuetter-Ferguson and Cape Cod 

models since the processes in step 7 (see Section 3 and Appendix A) tend to weigh more “stable” 

expected results with more “volatile” loss development factor results by year. 

STEP 5:  WEIGHT THE OUTPUT FOR EACH MODEL 

Once the results for each model have been reviewed and “finalized” in the iterative process involving 

the diagnostics and model output, they can be “combined” by assigning a weight to the results of each 

model. Similar to the process of weighting the results of different deterministic methods to arrive at an 

actuarial “best estimate,” the process of weighting the results of different stochastic models will result 

in an actuarial “best estimate of the distribution.” 

In the Navigation Pane, select the STOCHASTIC | ODP BOOTSTRAP | ODP SUMMARY | ASSUMPTIONS collection. 

The ASSUMPTIONS collection includes a Model Weights table, as illustrated in Table 5-11, in which a 

weight can be selected for each model by accident year. When the model is run, the weighted results 

will be compiled and output in the SUMMARY RESULTS collection. In general, you will want to focus on the 

individual models before deciding on how to weight them together to arrive at your “best estimate.”  

Therefore, you should select options in the MODEL ASSUMPTIONS and DIAGNOSTICS collections first and the 

Model Weights table can be left blank until all models are complete. 

 

37 Like for the means, whether the paid standard errors are less or greater than the incurred standard errors depends on the underlying 
data. 

Table 5-10: 

Estimated Unpaid Model 
Output – Paid Bornhuetter-
Ferguson 
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With all of the ODP Bootstrap models selected, and no weights entered for the moment, a summary of 

the results for each model is provided as the Summary of Results by Model table (illustrated in Table 

5-12) in the SUMMARY RESULTS collection. For example, consider the summarized results for all six models 

in Table 5-12 and note that the estimated unpaid is consistent with the results in Tables 5-1, 5-9 and 5-

10.38   

 

 

By comparing the results for all six models (or fewer if fewer are used) a qualitative assessment of the 

relative merits of each model can be determined. This can be determined separately for each year so 

that different weights can be used for each year. The assessment of the weights can then be entered 

into the Model Weights table in the ASSUMPTIONS collection. For example, Table 5-13 illustrates an 

example of weights for the data used in this section. While the weights used in this example are 

between 0% and 100% and add to 100% for each accident year, this is not a requirement. Similar to the 

Deterministic method weights, any positive value can be used as a weight and the total for each 

accident year will be adjusted to calculate the weights so they do add up to 100%. 

 

38 The Summary of Results by Model illustrated in Tables 5-12, 5-14 and 5-17 have been reduced to save space. The actual table also 
includes similar summaries for the coefficients of variation and loss ratios by model. 

Table 5-11: 

Model Weights Table 

Table 5-12: 

Summary of Results by 
Model (in part) 
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With the weights entered, use the RUN SIMULATIONS icon to run the simulations again. The weighted 

results will now be displayed in the Best Estimate column of Summary of Results by Model table. Since 

we are concerned with the entire distribution and not just a single point estimate, the weights by year 

are used to randomly sample the specified percentage of the iterations from each model. An example 

of the “blended” results is illustrated in Table 5-14. 

With weights entered in the Model Weights table, the model will also populate the Unpaid Table, Cash 

Flow, Run-off, Loss Ratios, CDR (if one of the Time Horizon options is used) and Incrementals tables 

and the Unpaid Graph for the weighted (Best Estimate) results, similar to what are shown in Tables 5-

1, 5-2, 5-3, 5-4, 5-5 and 5-7 and Graph 5-9, respectively.  The “Best Estimate” results can be used as is 

or further adjusted to account for information outside of these models or other actuarial judgments. 

 

 

In addition to the tables displaying results for the estimated distributions, the output also contains a 

table showing the deterministic results for the same assumptions for each model. Similar to the 

Summary of Results by Model table, the Deterministic Calculations table (illustrated in Table 5-15) 

shows the total unpaid estimate for each of the six methods, as well as the “Best Estimate” using the 

same weights used for the models (in this example, the weights shown in Table 5-13). 

Comparing Table 5-15 with Table 5-14, note that all of the deterministic estimates in Table 5-15 are not 

equal to the mean estimates in Table 5-14. Some sources characterize the deterministic estimates as 

the “true mean” and infer that with enough simulations the mean of the simulated distributions will 

converge to the deterministic estimate. As long as the stochastic and deterministic assumptions are 

Table 5-13: 

Model Weights by Accident 
Year 

Table 5-14: 

Summary of Results by 
Model (in part) with 
Weighted Best Estimate 
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identical, then this may in fact be true, but other sources and research would infer that the skewness 

of the assumptions used in the ODP bootstrap model may be different than the “implied symmetric” 

assumptions of the deterministic methods. If so, then it would be appropriate to assume that the 

deterministic estimates could represent a mode or median instead of a mean, except when all 

assumptions are symmetrical (e.g., assuming a normal distribution).39 

 

 

In addition to these methods, you could also use other methods (e.g., Berquist-Sherman, 

frequency/severity, etc.) to inform your judgment about the “best estimate” of the mean. Thus, using 

all of the methods and models at your disposal you can make a final selection of the mean unpaid 

claim estimate and enter it in the Deterministic Calculations table as illustrated in Table 5-16. 

 

 

After the selected best estimate has been entered in the Deterministic Calculations table, you can 

check the Use Selected Unpaid as Mean option and use RUN SIMULATIONS to run the simulations again. 

The model will then “shift” the mean of the Best Estimate (i.e., weighted) results so that they match 

your selected unpaid by year. The “shift” is done in an additive fashion by adding the difference 

between the selected unpaid and the weighted mean unpaid by accident period to each iteration. The 

results for this example are illustrated in Table 5-17. 

 

39 Actuarial Standard of Practice No.43 – Property/Casualty Unpaid Claim Estimates, Appendix 3 states in part “As to the definition of the 
term [Actuarial Central Estimate], it is generally agreed that most traditional actuarial methods are meant to produce some measure of 
central tendency. But what measure? There are several different measures of central tendency, including (for example) mean, median, 
mode…”  

Table 5-15: 

Deterministic Estimates by 
Method 

Table 5-16: 

Deterministic Estimates by 
Method 
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With weights entered in the Model Weights table and the Use Selected Unpaid as Mean option 

checked, the model will also populate the Unpaid Table, Cash Flow, Run-off, Loss Ratios and CDR (if 

one of the Time Horizon options is used) tables and the Unpaid Graph for the selected (“shifted” Best 

Estimate) results, similar to what are shown in Tables 5-1, 5-2, 5-3, 5-4 and 5-5 and Graph 5-9, 

respectively. Note, however, that the Incrementals tables will continue to show the weighted results 

prior to shifting. 

For the weighted results in the SUMMARY RESULTS collection one additional graph is included which 

summarizes the distribution graphs for all models. An example of the Summary Graph is illustrated in 

Graph 5-10. 

 

 

 

 

Table 5-17: 

Summary of Results by 
Model (in part) with 
Selected Best Estimate 

Note: 

Only the Best Estimate 
(Weighted) results will be 
shifted. The results from 
the individual models will 
not be shifted in any of the 
results tables or graphs. 

Graph 5-10: 

Summary of Model 
Distributions 
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6. Using the Mack Bootstrap Models 

Even though the Arius system has numerous options to help you obtain the best model possible for 

your data, you can obtain valuable diagnostic information and even initial distribution estimates for a 

line of business with only a few steps, which can be summarized as: 

  enter the data to be modeled, 

 run the model diagnostics to populate the necessary statistics and fields, and 

 run the simulation to estimate future results (i.e., use the default model settings). 

Of course, the diagnostics and model results can be used to evaluate and improve how your model fits 

your data. Understanding the purpose and use of the diagnostic tools requires some prior statistical 

knowledge so we direct the interested reader to Appendix B, which provides a general overview of the 

diagnostic process. Therefore, this section assumes prior knowledge of statistics, and starts with the 

basics of running a model and builds on that foundation by exploring all of the different models, model 

options, diagnostics, and model output. Note however, that Appendix B is based on using the 

diagnostic tools for the ODP Bootstrap model, so the differences when using the Mack Bootstrap 

models will be discussed here. 

REQUIRED DATA: MACK BOOTSTRAP PAID MODEL 

Inputs for the paid model are relatively simple. You can start with nothing more than a triangle of paid 

loss data, but if: 

IN ADDITION TO PAID LOSS DATA, IF YOU PROVIDE: THE SYSTEM CAN: 

 a vector of earned premium data  provide loss ratios by accident period 

at various percentiles 

 a vector of ultimate exposure data  simulate based on exposure-adjusted 
losses rather than only the raw data 

 

There are certain limitations that are imposed on the data by the mathematics involved in the model. 

Specifically: 

 the triangle shape must be symmetrical in terms of row and column periods – i.e., it must be 

annual x annual or quarter x quarter; 

 The system will work with triangles that contain a stub period (e.g., annual x annual with 

most recent diagonal evaluated at 6 months)  

 The system will work with triangles where the first development period is different from the 

rest (e.g., development columns of 6/18/30/42… or 3/15/27/39…) 

 The system will not work with truly asymmetrical triangles, such as annual accident periods x 

quarterly development. 

 there must be at least 3 diagonals of data; and 

 blank cells are acceptable anywhere in the triangle except on the most recent two diagonals, 

unless a whole row is blank (i.e., a triangle in run-off is OK) 

 Individual negative age-to-age factors are acceptable, and the average for a column can be 

negative. 

Note: 

If you have a partial last 
exposure period, then you 
should enter the earned 
premium in the 
appropriate column, but 
the ultimate premium and 
ultimate exposure are for 
the full period. For 
example, if you have an 
annual triangle but a 6 
month last diagonal, then 
you should enter the 
premiums earned for the 
first 6 months in the 
earned premium column 
and the fully annualized 
premium and/or exposure 
in the ultimate premium 
and ultimate exposure 
columns, respectively. For 
more details see Section 9. 
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 Do not enter “0” values where the values are unknown. The model will treat cells with “0” values 

as information (that is, no losses occurred in this period), and blank cells as unknown. 

STEP 1:  ENTER BASIC MODEL DATA 

To get started, select one of your segments using the Segment drop down box below the HOME ribbon.  

In the Navigation Pane, select the DATA | INPUTS | ALL INPUTS collection. Notice that the first three tables 

in the collection, Paid Loss, Case Loss Reserves and Incurred Loss, are white; these are the data entry 

tables. You can fill in any two of these tables and the third will change to tan, which means it will be 

filled automatically and that you cannot enter data here any longer. 

1. Enter data for the Paid Loss triangle (as illustrated in Image 6-1) and the Incurred Loss triangle, if 

you have that available. You can either type in data or paste it in from another source. 

 

 

2. Also from the ALL INPUTS collection, you can enter Earned Premium and Exposure data, if you have 

that available (as illustrated in Image 6-2). Having this additional data allows the model to provide 

more information; this is especially true of Premium data, which allows the projection of ultimate 

loss ratios. 

 

 

3. In order to enter the Ultimate Premium data (again from the ALL INPUTS collection), you must open 

the table and click on the Source Data  icon in order to get to the Deterministic table used to 

estimate Ultimate Premium. This is illustrated in Image 6-3. 

  

Image 6-1: 

Paid Loss Data Triangle 

Note: 

You can use the  icon to 
switch between cumulative 
and incremental or the  
icon to switch between 
accident and calendar 
views, or both, prior to 
bringing in the data. 

Note: 

The earned premiums are 
entered in a triangle so 
that they can be developed 
in the Deterministic 
portion of the system. 

Image 6-2: 

Earned Premium and 
Exposure tables 
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9.  

10.  

11.  

12.  

13.  

14.  

15.  

 

STEP 2:  REVIEW / ENTER THE MODEL ASSUMPTIONS 

In the Navigation Pane, select the STOCHASTIC | MACK BOOTSTRAP | MODEL ASSUMPTIONS collection. The 

General window (shown in Image 6-4) includes model assumptions that will apply to the Mack 

Bootstrap models. 

 

 

4. Enable Exposure Adjustment – If you check this option, the system divides each row in your data 

triangle by the corresponding row in the Ultimate Exposures vector and uses the “exposure-

adjusted” data for all further calculations in the model. Values are then multiplied by the Ultimate 

Exposures again after all iteration calculations are complete, returning the modeled results to a 

“value” basis. This option can be useful when there is a changing exposure volume. By using 

exposure adjusted data in the model, a better fit could result and the simulation results will be 

“adjusted” for the relative exposures by period. 

5. Use Last X Periods – [This is not currently a user-editable option. The system directly follows the 

underlying theory, using a volume-weighted all-year average for the age-to-age ratios. Additional 

options for this will be available in an upcoming release of Arius.] 

6. Enable Zero Residual Adjustment – [This option is not yet active. All the residuals in your model 

should be independent and identically distributed. Theoretically, they should also sum to zero. 

The ability to force the total to be equal to zero will be available in an upcoming release of the 

system.] 

Image 6-4: 

General Model Options 
object 

Click on Source 
Data icon to open 
Comparison of 
Ultimate Premium 
Estimates table 

Image 6-3: 

Ultimate Premiums and 
Comparison of Ultimate 
Premiums Estimates tables 
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7. Limit Historical Incrementals to Zero – The random nature of the simulation process can result in 

negative amounts in the incremental results. When this option is checked, the system 

automatically replaces any negative incremental values in the bootstrap sample triangles with 

zero. Negative incremental values are certainly acceptable in many situations, for example when 

modeling paid data that includes salvage amounts; in those cases, negatives are frequently 

expected, and they should be reflected in the simulated data. Occasionally, however, negative 

incremental values in the bootstrap sample triangle can also lead to extreme age-to-age factors 

which, in turn, lead to unrealistic unpaid values for a few iterations. Limiting historical incremental 

values to zero in that case can be thought of as adding a constraint to the model which will 

effectively “adjust” these unrealistic iterations. 

8. Limit Future Incrementals to Zero – When this option is checked, the system automatically 

replaces any negative incremental values in the lower right portion (after process variance) of the 

completed rectangle with zero. This provides a similar ability to effectively constrain unrealistic 

iterations, but it is a separate constraint since there are times when only the future incremental 

values need to be constrained and not the historical incremental values, and vice versa. For 

example, negative historical incremental values in the bootstrap sample data can be reasonable 

when case reserves for later development ages are expected to be redundant while negative 

future incremental values could be causing unrealistic results for a few iterations. 

9. Residual Sampling Distribution – The system currently samples the residuals with replacement to 

create the sample triangles of age-to-age factors. 

10. Enable Process Variance – A key feature of the Mack Bootstrap model is the simulation of Process 

Variance. The primary calculation steps in the model focus on parameter risk, but process risk is 

used to add the final “random fluctuations” to the future incremental values. Checking this option 

will turn these random fluctuations on, while unchecking turns them off. 

You can get a measure of the effects of process variance versus residual sampling on your results 

by running the same model multiple times, with this option and/or residual sampling turned on 

and off, using the same user-input random seed value each time. The differences in the various 

simulations will help you diagnose the differences between the deterministic estimate and 

bootstrap mean for each model. 

11. Process Variance Distribution – If you check the Enable Process Variance option (above) then the 

default approach is to add process variance to the projected future development by simulating 

from a Gamma distribution using each incremental value as the mean and the development factor 

standard deviation squared as the variance. As an option you can select to use a Normal or 

Lognormal distribution instead. For example, if the residuals exhibit little or no skewness then 

either the normal or lognormal may be a more appropriate distribution for this feature of the 

data. 

If you have not done so, save your file at this point. 

STEP 3:  EVALUATE YOUR DATA WITH THE MODEL’S DIAGNOSTICS 

The standard Mack bootstrap model is essentially based on a traditional chain ladder development 

method. In order to increase the model’s predictive power, the data must be consistent with the 

assumptions that are inherent in the deterministic form of the model (or the model should be adjusted 

to be consistent with the data). Specifically: 

 the expected value of the incremental losses to emerge in the next period is proportional to the 

total losses emerged to date, by accident year;  
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 the columns of incremental losses are independent (except for observations in the same accident 

year); and  

 the variance of the next incremental observation is a function of the age and the cumulative 

losses to date. 

The diagnostic output includes a variety of tables and graphs to help the user test these assumptions 

and then to adjust the model options to improve the statistical fit of the model to the data.  

First, from the HOME ribbon, click on the RUN DIAGNOSTICS icon to populate the tables and graphs. In an 

iterative process, you will now want to analyze the diagnostic output, make adjustments to the model 

options (described above), and then RUN DIAGNOSTICS again to update the diagnostics results. An 

additional part of this iterative process is to click on the RUN SIMULATIONS icon from the HOME ribbon to 

run the simulations for the segment you are analyzing. This will allow you to review the model output 

for the segment, make adjustments to the model options and then either run diagnostics or 

simulations again until you have optimized the model. 

In the Navigation Pane, select the STOCHASTIC | MACK BOOTSTRAP | PAID LOSS | DIAGNOSTICS collection. The 

DIAGNOSTICS collection includes a Residual Graphs window (as illustrated in Graph 6-1). These graphics 

show plots of the residuals (from Image 6-7) against the development, accident, and payment periods, 

as well as a plot of the residuals vs. the fitted (i.e., predicted) values. These will help you identify trends 

or other features in your data that may not be completely modeled by the chain ladder approach, thus 

indicating that the Mack bootstrap predictions from the data may be less than optimal. 

 

 

For illustration purposes, we are using the BI data in the ODP_Mack_Hayne.apj file that is included 

with the system files in the C:\Users\username\Documents\Milliman\Arius\DemoFiles directory, where 

the username is your Windows user name.  

In the Mack bootstrap model, residuals are resampled with replacement – that is, they are taken from 

any location in the residual triangle, and placed in another random location to form a sample triangle. 

Graph 6-1: 

Plots of Residuals 
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Therefore, the residuals should all be independent, identically distributed random numbers. Unlike the 

ODP bootstrap model, the standardized residuals are calculated using the standard deviation of each 

development period, so heteroscedasticity (i.e., different variances) does not occur. Thus, there are no 

heteroscedasticity adjustment factors for the Mack bootstrap model, but from the Plot of Residuals 

against Development Period (in Graph 6-1) and the Residual Relativities table (illustrated in Graph 6-

2) you can that the standard deviation relativities are all consistent. 

 

 

The remaining DIAGNOSTIC collection windows include the Adjusted Triangle, Residuals and Age-to-Age 

Factors tables. If you have checked the Enable Exposure Adjustment option, then the incremental 

values will be divided by the exposures in each period. If you have stub period data (see Section 8) then 

the last diagonal will be grossed up to a full period. Otherwise, this will simply be the difference in the 

cumulative values you entered (as illustrated in Image 6-1). 

The next diagnostic output is the Age-to-Age Factors table (as illustrated in Image 6-8). These factors 

are essentially calculated as if from a deterministic analysis, except that exposure adjustments and/or 

stub period adjustments for the last diagonal are also included. In other words, the factors are 

calculated after cumulating the adjusted incremental values (as illustrated in Image 6-7). 

 

 

In addition to the age-to-age factors, this table also includes the volume weighted Averages for the 

age-to-age factors (including exposure and/or last diagonal adjustments if appropriate). 

The next diagnostic output is the standardized residuals shown in the Residuals table. These residuals 

are the basis for the model’s simulations. The calculations for the residuals are described in Appendix 

Image 6-5: 

Age-to-Age Factor Triangle 

Graph 6-2: 

Plots of Residual 
Relativities 
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A, although the residuals will be based on the data adjusted for exposures and/or stub periods (as 

illustrated in Image 6-6). 

 

 

STEP 3A:  IDENTIFY AND EXCLUDE OUTLIERS 

The next DIAGNOSTICS window, Normality, will help you judge the general improvement in the model as 

you change the model options. For example, look at Graph 6-3 below which corresponds to the plots 

shown above in Graph 6-1. 

 

 

As noted in Appendix B, the changes in the P-Value, R2, AIC and BIC values under the Normality (Q-Q) 

Plot and Box-Whisker Plot are a useful guide. You can also review these graphs before and after other 

changes to the model options. 

STEP 3B:  DEFINE HOW TO HANDLE TAIL FACTORS 

After you a better sense from the diagnostics about how your data fits the requirements of the model, 

and before you run your model simulations, the last consideration that is common to all deterministic 

methods is the potential inclusion of a tail factor. In the Navigation Pane, select the STOCHASTIC | ODP 

BOOTSTRAP | PAID LOSS | DIAGNOSTICS collection. You can then open the Tail Factor window as illustrated in 

Image 6-7. 

Graph 6-3: 

Normality & Box-Whisker 
Plots 

Image 6-6: 

Standardized Residuals 
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12. Enable Tail Factor Distribution – The system provides two options: 

 Check this option and the system will select a tail for each iteration based on your supplied 

mean, standard deviation and distribution type; or 

 Uncheck this option and the system will use your Mean tail factor amount in each iteration. 

13. Tail Factor Distribution – If you check Enable Tail Factor Distribution (above), you can select from 

a lognormal or normal distribution from which to simulate the tail factor. 

14. Limit Tail Factor with Min/Max – If you choose to randomly select a tail factor, you can also 

provide specific minimums and/or maximum amounts for the model to use. If you provide 

min/max levels, and check this option, any random amounts outside these levels will be limited to 

these levels. An example might be to limit factors to a minimum of 1.00. 

15. Extrapolate Tail Factor – One of the outputs of the simulation is an estimate of the cash flows 

resulting from the estimated unpaid amounts. These can be presented two ways: 

 If you check this option, the future payments related to the tail will be extended out beyond 

the development of the triangle itself; or   

 If you uncheck this option, the future payments related to the tail are all accumulated into 

one final period in the Estimated Cash Flow exhibit. 

The future cash flows related to the tail are extrapolated into the future based on the Number of 

Periods in Extrapolation field and using the value entered into the Exponential Decay Factor field. 

This is important if you want a meaningful Estimated Cash Flow table and will also affect the 

discounted results. 

16. Number of Periods in Extrapolation – This is an estimate of how many future periods are 

assumed to be in the tail factor, used as noted above to extrapolate the Cash Flows to future 

periods.  

The incurred selection will effectively be converted to the number of periods for the paid 

selection. For example, if the paid model extrapolates 5 years and the incurred model is set to not 

extrapolate, the simulated paid values will be adjusted to sum to the same ultimate values as the 

incurred values and the extrapolation for an additional 5 years will be included. Alternatively, if 

the incurred model extrapolates 5 years and the paid model is set to not extrapolate, the 

Image 6-7: 

Tail Factor assumptions 
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adjustment of the paid simulations will include zeroes beyond the end of the triangle since no 

payment pattern is simulated beyond the end of the triangle. 

17. Tail Factor – The parameterization of the tail factor has several related parts (as illustrated in 

Image 6-7): 

 Mean – Enter your best estimate of a tail factor. 

 Standard Deviation – If you have checked the Enable Tail Factor Distribution option, enter 

an estimate of the standard deviation of the tail factor. 

 Suggested Std Deviation: Tail Factor – After you RUN DIAGNOSTICS, suggested parameters for 

the standard deviation of the tail factor will be shown here based on two different methods: 

 Resampling – this method extends the residual resampling that is used for the body of 

the triangles into the tail of the triangle. 10,000 resampling iterations are done and the 

implied standard deviation is shown here. 

 Murphy – this method uses your a priori loss ratio input (from Model Assumptions | 

Bornhuetter-Ferguson) and Ultimate Premiums (or Exposures) and calculates the 

selected ultimate loss for each accident year. The implied tail factor is derived from the 

difference between the chain ladder ultimate, excluding the tail factor, and the user’s 

selected ultimate for each year. The standard deviation from this set of implied tail 

factors is shown here. 

 Min / Max – If you have checked the Limit Tail Factor with Min/Max option, select a 

minimum and/or maximum for your tail factor. 

 Percentile – The 95% confidence interval for the tail factor distribution is shown. Similar to 

the confidence interval for the Bornhuetter-Ferguson a prior assumption, you can change the 

percentiles in the heading to see a different interval. 

 Exponential Decay Factor – When extrapolation is turned on, one minus this factor is 

multiplied times the tail factor for each period in the extrapolation. Since the tail factor is a 

factor to ultimate, each successive factor is a new factor to ultimate one period later and 

dividing each factor by the next factor results in incremental age-to-age factors for the tail (as 

illustrated in Image 6-8, with a Tail Factor = 1.1, Decay Factor = 35.0% and Number of Years = 

10). 

 

 

18. Tail Factor Standard Deviations – In addition to the average age-to-age factors (illustrated in 

Image 5-11 below), the standard deviations of the Age-to-Age factors are shown in the Data 

Triangle row (illustrated in Image 6-7 above). After you run the simulations, the Sampled Data 

Tail Factor Extrapolation

Period TF TF + 1 TF + 2 … TF + n-1

Extrapolation TF / TF + 1 TF + 1 / TF + 2 TF + 2 / TF + 3 … TF + n-1

Cumulative TF(Mean)
1 + [("TF" - 1)

x (1 - Decay)]

1 + [("TF + 1" - 1)

x (1 - Decay)]
…

1 + [("TF + n-2" - 1)

x (1 - Decay)]

Period TF TF + 1 TF + 2 … TF + 10-1

Extrapolation 1.1000 / 1.0650 1.0650 / 1.0423 1.0423 / 1.0275 … 1.0013

Cumulative 1.1000
1 + [(1.1000 - 1)

x (1 - 0.35)]

1 + [(1.0650 - 1)

x (1 - 0.35)]
…

1 + [(1.0021 - 1)

x (1 - 0.35)]

Period TF TF + 1 TF + 2 … TF + 9

Extrapolation 1.0329 1.0218 1.0144 … 1.0013

Cumulative 1.1000 1.0650 1.0423 … 1.0013

Image 6-8: 

Tail Factor Extrapolation 
Example with Formulas 
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row of this table is also shown, which is based on all of the simulated data. Both of the standard 

deviation rows can be used to help you select a standard deviation for the tail factors. 

In addition to the model diagnostics described above, the results output also has diagnostic features. 

Thus, running the model using RUN SIMULATIONS, reviewing the model output and adjusting model 

parameters and assumptions is part of the diagnostic process. Reviewing the model output is discussed 

in more detail in the remainder of this Section. 

SUMMARY OF OUTPUT 

The results for each model are shown in their own collection. For example, in the Navigation Pane, 

select the STOCHASTIC | MACK BOOTSTRAP | PAID LOSS | ULTIMATE collection to view all of the simulation 

results for the Mack Bootstrap model. For the TIME HORIZON results, there is an additional table. 

 

Estimated Unpaid Mean, Standard Error, Coefficient of 
Variation, Min, Max and Percentiles. 
Total Distributions and TVaRs. 

 

Total Unpaid Distribution Histogram and kernel density of total 
unpaid. 

 

Estimated Cash Flow Future calendar period payments. 

 

Estimated Run-off Total unpaid as future calendar 
periods are removed. 

 

Estimated Loss Ratios Time zero to ultimate loss ratios. 

 

Estimated CDR Claim Development Results (for Time 
Horizon options only). 

 

Incremental Values Mean and standard deviation values 
for each incremental cell, historical 
and future. 

 

STEP 4:  EVALUATE THE OUTPUT FOR EACH MODEL 

After the model diagnostics have been set up and reviewed, the next step in the evaluation of each 

model is to use RUN SIMULATIONS to run the simulations for the segment you are analyzing. To illustrate 

the diagnostic elements of the simulation output we will review the results for the Mack bootstrap 

model. 
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Estimated Unpaid Results 

The first diagnostic element of the Unpaid Table (illustrated in Table 6-1) can be seen by reviewing the 

Standard Error and Coefficient of Variation columns. As general rules, the standard error should go up 

as you move from the oldest years to the most recent years and the standard error for the total of all 

years should be larger than any individual year. In Table 6-1, the standard errors follow these general 

rules. For the coefficients of variation, they should go down when moving from the oldest years to the 

more recent years and the coefficient of variation for all years combined should be less than for any 

individual year.40  Except for the 2013 year, the coefficients of variation in Table 6-1 also follow the 

general rules. 

 

 

The reason the standard errors (value scale) tend to go up is that they tend to follow the magnitude of 

the mean or expected value estimates. The reason the coefficients of variation (percent scale) tend to 

go down has more to do with the independence in the incremental claim payment stream. For the 

oldest accident year, there is typically only one (or a few) incremental payment(s) left so the variability 

of that payment(s) is (almost) fully reflected in the coefficient. For the most current accident year, the 

“up and down” variations in the future incremental payment stream can offset each other thus causing 

the total variation to be a function of the correlation between each incremental payment for that 

accident year (i.e., the incremental payments are assumed independent). 

The coefficient of variation rules noted above are a reflection of the step 7’s described in Section 3 

(and Appendix A), in the sense that they describe the process variance in the model. While the 

coefficients of variation should go down, if they do start going back up in the most recent year(s), as 

illustrated in Table 6-1 for 2013, then this could be the result of the following issues: 

1. The parameter uncertainty tends to increase when moving from the oldest years to the more 

recent years as more and more parameters are used in the model. In the most recent year(s), the 

parameter uncertainty could be “overpowering” the process uncertainty, causing the coefficient 

of variation to start going back up. At the very least, the increasing parameter uncertainty will 

cause the rate of decrease in the coefficient of variation to slow down. 

 

40 These standard error and coefficient of variation rules are based on the independence of the incremental process risk and assume that 
the underlying exposures are relatively stable from year to year – i.e., no radical changes. In practice, random changes do occur from 
one year to the next which could cause the actual standard errors to deviate from these rules somewhat. In other words, these rules 
should generally hold true, but are not considered hard and fast rules in every case. Strictly speaking, the total all years rules assume 
that the individual years are not positively correlated. 

Table 6-1: 

Estimated Unpaid Model 
Output 

Note: 

For policy period data or 
incomplete accident period 
data, the unpaid data in 
the last row(s) will be 
reduced to only include 
earned exposures. 

Note: 

Caution should be 
exercised in the 
interpretation and 
adjustments for increases 
in the coefficient of 
variation in recent years. 
While keeping the theory 
in mind is appropriate, this 
must be balanced with the 
need to keep from 
underestimating the 
uncertainty of the more 
recent years. 
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2. If the increase in the most recent year(s) is significant, then this could indicate that the model is 

overestimating the uncertainty in those years. If this is the case, then an adjustment to the model 

parameters may be needed (e.g., limit incrementals to zero, etc.). 

While we mentioned the rules for the standard error and coefficient of variation for the total of all 

years, it is also worth noting that in addition to the correlation (independence) within each accident 

year the total of all years also includes the impact of the correlation (independence) between accident 

years. In essence, when one or more accident years are “bad” we do not expect all accident years to be 

“bad.”  To see this impact, you can add the accident year standard errors and note that they will not 

sum to the standard error for all years combined.41 

The next diagnostic element in the Unpaid Table is the Minimum and Maximum columns. In these 

columns, the smallest and largest values, respectively, from among all iterations of the simulation are 

displayed. These values can be reviewed judgmentally to make sure that they are not outside the 

“realm of possibility.”  If they do seem a bit unrealistic then they could indicate the need to review the 

model options. For example, the presence of negative numbers might lead to changing one or both of 

the options which limit incremental values to zero. Sometimes “extreme” outliers in the results will 

show up in these columns and may also distort the histogram (discussed later in this section). 

Risk Measures 

Also included in Table 6-1, notice that there are three rows of “Percentile” numbers and then four 

rows of TVaR numbers at the bottom of these tables under each of the percentile columns. For the 

three “Percentile” rows, the normal, lognormal and gamma distributions, respectively, have been fit to 

the Total unpaid claim distribution. The fitted mean, standard deviation and selected percentiles are 

shown under the Mean, Standard Error and Percentile columns, respectively, so that the smoothed 

results can be used to judge the quality of fit for each distribution or other purposes such as 

parameterizing a DFA model or using smoothed results in the tail of the distribution. 

The Tail Value at Risk (TVaR)42 is the average of all of the simulated values equal to or greater than the 

percentile value. For example, in Table 6-1 the 75th percentile value for the total unpaid for all accident 

years combined is 1,038,578 and the average of all simulated values that are greater than or equal to 

1,038,578 is 1,067,644. The “Normal TVAR,” “Lognormal TVaR” and “Gamma TVaR” rows are 

calculated the same way, except that instead of using the actual simulated values from the model the 

respective fitted distributions are used in the calculations. 

To interpret the TVaR numbers, the question we are trying to answer with a TVaR number is “if the 

actual outcome does exceed the X percentile value, on average how much might it exceed that value 

by?” This is an important question related to risk based capital calculations and other technical aspects 

of enterprise risk management, although a more complete discussion is beyond the scope of this 

manual. It is worth noting, however, that the purpose of the normal, lognormal and gamma TVaR 

numbers is to provide “smoothed” values in the sense that some of the random noise is kept from 

distorting the calculations. 

Estimated Cash Flow Results 

In addition to the results by accident year, we can also review the model output by calendar year (or by 

future diagonal) in the Cash Flow table as illustrated in Table 6-2. Comparing Table 6-2 to 6-1, notice 

that the Total row is identical since the total is the same whether you add the parts horizontally or 

 

41 Likewise, the minimum, maximum and each of the percentile columns will not sum to the total for all years combined. In contrast, 
adding the mean values for each accident year will sum to the total for all years combined. 

42 The Tail Value at Risk is sometimes referred to as the Conditional Tail Expectation. 
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diagonally. Similar diagnostic issues can be reviewed in this table, except that the relative values of the 

standard errors and coefficients of variation move in the opposite direction for calendar years 

compared to accident years. This should make intuitive sense as the “final” payments projected the 

farthest out into the future should be the smallest yet relatively most uncertain. 

 

 

Estimated Unpaid Claim Runoff Results 

Another report similar to the Cash Flow table is the Run-off table. Rather than looking at individual 

diagonal results, the Run-off table starts with the total unpaid results and then looks at how the total 

unpaid will decrease over time as successive diagonals are removed, as illustrated in Table 6-3. 

Comparing Table 6-3 to 6-1 & 6-2, notice that the first row of Table 6-3 is identical to the Total rows in 

Tables 6-1 and 6-2. Each successive row in Table 6-3 is then the total of the remaining diagonals. 

 

 

Estimated Ultimate Loss Ratio Results 

The next collection table shows the ultimate Loss Ratios by accident year as illustrated in Table 6-4. If 

there are no earned premiums or ultimate premiums input into the model, then this table will not be 

filled in since the model cannot calculate a loss ratio without the premium information.43 

 

43 Earned premiums are used as the denominator of the loss ratios. However, if earned premiums are not input then earned premiums 
are estimated from the ultimate premiums. 

Table 6-2: 

Estimated Cash Flow 
Model Output 

Table 6-3: 

Estimated Unpaid Claim 
Run-Off Model Output 
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Unlike the Loss Ratios table for the ODP bootstrap model, the loss ratios for the Mack bootstrap model 

are calculated from only the simulated values beyond the end of the triangles, since the data in the 

triangle is not simulated. Because we are using only future simulated values, the standard errors and 

coefficients of variation in Table 6-4 increase when comparing the latest to the oldest years for the 

reasons cited earlier for the Unpaid Table. 

Estimated Incremental Results 

The next collection table is designed to help you take a deeper look at the simulations and to 

understand the reasons for increases in the coefficients of variation (illustrated in Tables 6-1 and 6-4). 

They show the mean and standard deviations, respectively, by accident year by incremental period. As 

illustrated in Table 6-5, both the Mean and Standard Deviation Incrementals can be reviewed down 

each column or across each row to look for any irregularities in the expected patterns. 

As you can see by looking down the 24 and 36 month columns in Table 6-5, it appears as though there 

might be “too much” variability in future incremental values for years 2012 and 2013 – i.e., those 

“future” values do not appear consistent with the values in the prior years. This does not imply that the 

“historical” values are correct and that the “future” values are overstated, just that they are not always 

consistent. These inconsistencies appear to be impacting both the unpaid and loss ratio results for 

2012 and 2013. 

As noted above, the Mack bootstrap model only uses simulation for future incremental values and as 

such the historical triangle is unchanged for each iteration. Thus, the standard deviations for each 

historical incremental is zero as illustrated in Table 6-5. 

Table 6-4: 

Estimated Loss Ratio 
Model Output 

Note: 

For policy period data or 
incomplete accident period 
data, the unpaid data in 
the last row(s) will be 
reduced to only include 
earned exposures. 
However, since the earned 
exposures are divided by 
the Earned Premium to 
calculate the loss ratios we 
have a match of losses to 
premium. 
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Estimated Claim Development Result 

If the Mack bootstrap Time Horizon model is selected, either from the Default Model Selection tab of 

the Model Options dialog (as illustrated in 4-14) or from the Choose Models dialog (as illustrated in 4-

16), from the Navigation Pane you can select the STOCHASTIC | MACK BOOTSTRAP | PAID LOSS | TIME HORIZON 

collection. In addition to all of the windows discussed above for the ULTIMATE collection, the TIME 

HORIZON collection includes the CDR or Claim Development Result table (as illustrated in Table 6-6). 

 

 

The output for this table is calculated by subtracting the mean of the Unpaid Table from the ULTIMATE 

collection from each of the iterations used to calculate the Unpaid Table from the TIME HORIZON 

collection. For example, the Unpaid Table for the TIME HORIZON collection is shown in Table 6-7. 

Subtracting the Total Mean from Table 6-1 of 1,008,544 from the Total Mean from Table 6-7 of 

1,008,341, results in the Total Mean for Table 6-6 of (202). The CDR is used to calculate the required 

capital for Solvency II regulations in Europe. 

Table 6-5: 

Estimated Incrementals by 
Accident Year by 
Development Period 

Table 6-6: 

Estimated Claim 
Development Result 
Output 
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Total Unpaid Distribution Graph 

The final model output from the simulations is a histogram of the estimated unpaid amounts for the 

total of all accident years combined, as illustrated in Graph 6-6. The Unpaid Graph, or histogram, is 

created by dividing the range of all values from the simulation (using the maximum and minimum 

values) into one hundred “buckets” of equal size and counting the number of simulations that fall 

within each “bucket.”  Dividing by the total number of simulations (10,000 in this case) results in the 

frequency or probability for each “bucket” in the graph. 

Since the simulation results often look “jagged” (as they do in Graph 6-6) a kernel density function is 

also used to calculate a “smoothed” line fit to the histogram values. The kernel density distribution is 

represented by the blue line in Graph 6-6.44 

 

 

 

44 In simple terms, a kernel density function can be thought of as a weighted average of values “close” to each point in the “jagged” 
distribution with progressively less weight being given to values the further they are from the point being evaluated. For a more 
detailed discussion of Kernel density functions, see Wand & Jones, “Kernel Smoothing,” Chapman & Hall. 1995. 

Graph 6-4: 

Total Unpaid Distribution 

Table 6-7: 

Estimated Unpaid Model 
Output for Time Horizon 
option 
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When you initially parameterize and run the model, you may find the resulting graph to be extremely 

narrow – almost a straight line. This is normally caused by a handful of extreme iterations. Many of the 

percentile results in the Unpaid Table may still appear reasonable, but it is still important to remove 

these extreme iterations since they will unduly affect your mean result. One of the most common 

causes of the extreme iteration is negative incremental values which can sometimes also result in an 

unrealistically high age-to-age factor. Thus, checking the Limit Incremental to Zero constraints may 

help remove these extreme iterations. 
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7. Using the Hayne MLE Models 

In addition to two modeling families based on commonly understood volume weighted age-to-age 

factors and cumulative data, Arius contains a third family based on fitting model parameters to 

incremental data and using Maximum Likelihood. Four different model frameworks (i.e., Berquist-

Sherman, Cape Cod, Chain Ladder and Hoerl Curve) are included which allow you to fit parameters 

based on each framework and then simulate possible outcomes directly from the model parameters. 

In addition, you can start with claim count data to estimate ultimate claim counts using the Frequency 

models and then use your estimated ultimate counts and the loss data to estimate ultimate unpaid 

claims using the Severity models. Or, you can simply enter ultimate claim count estimates and just use 

the Severity models. 

Even though the Arius system has options to help you obtain the best model possible for your data, 

you can obtain valuable diagnostic information and even initial distribution estimates for a line of 

business with only a few steps, which can be summarized as: 

 enter the data to be modeled, 

 run the model diagnostics to calculate the model parameters and populate the necessary statistics 

and fields, and 

 run the simulation to estimate future results (i.e., use the default model settings). 

Of course, the diagnostics and model results can be used to evaluate and improve how your model fits 

your data. Understanding the purpose and use of the diagnostic tools requires some prior statistical 

knowledge so we direct the interested reader to Appendix B, which provides a general overview of the 

diagnostic process. Therefore, this section assumes prior knowledge of statistics and starts with the 

basics of running a model and builds on that foundation by exploring all of the different models, model 

options, diagnostics and model output. Note however, that Appendix B is based on using the diagnostic 

tools for the ODP Bootstrap model, so the differences when using the Hayne MLE models will be 

discussed here. 

REQUIRED DATA: FREQUENCY MODELS 

Inputs for the frequency models are relatively simple. You can start with nothing more than a triangle 

of reported claim count data and a vector of ultimate exposures, but if: 

IN ADDITION TO CLAIM COUNT DATA, IF YOU PROVIDE: THE SYSTEM CAN: 

 a vector of earned premium data  provide loss ratios by accident 

period at various percentiles 

 A triangle of incurred or reported loss data  reconcile Ultimate Losses using 
Paid, Case Reserves, and IBNR 

 a vector of ultimate exposure data  simulate based on exposure-
adjusted losses rather than only 

the raw data 

 

There are certain limitations that are imposed on the data by the mathematics involved in the model. 

Specifically: 

 the triangle shape must be symmetrical in terms of row and column periods – i.e., it must be 

annual x annual or quarter x quarter; 

Note: 

If you have a partial last 
exposure period, then you 
should enter the earned 
premium in the 
appropriate column, but 
the ultimate premium and 
ultimate exposure are for 
the full period. For 
example, if you have an 
annual triangle but a 6 
month last diagonal, then 
you should enter the 
premiums earned for the 
first 6 months in the 
earned premium column 
and the fully annualized 
premium and/or exposure 
in the ultimate premium 
and ultimate exposure 
columns, respectively. For 
more details see Section 9. 
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 The system will work with triangles that contain a stub period (e.g., annual x annual with 

most recent diagonal evaluated at 6 months)  

 The system will work with triangles where the first development period is different from the 

rest (e.g., development columns of 6/18/30/42… or 3/15/27/39…) 

 The system will not work with truly asymmetrical triangles, such as annual accident periods x 

quarterly development. 

 there must be at least 3 diagonals of data; and 

 blank cells are acceptable anywhere in the triangle except on the most recent two diagonals, 

unless a whole row is blank (i.e., a triangle in run-off is OK) 

 Individual negative age-to-age factors are acceptable, and the average for a column can be 

negative. 

 Do not enter “0” values where the values are unknown. The model will treat cells with “0” values 

as information (that is, no losses occurred in this period), and blank cells as unknown. 

REQUIRED DATA: SEVERITY MODELS 

Inputs for the severity models are also relatively simple. You can start with nothing more than a 

triangle of paid loss data and a vector of ultimate claim counts, but if: 

IN ADDITION TO DATA TRIANGLES, IF YOU PROVIDE: THE SYSTEM CAN: 

 a vector of earned premium data  provide loss ratios by accident period 
at various percentiles 

 a vector of ultimate exposure data  simulate based on exposure-adjusted 

losses rather than only the raw data 

 

All of the limitations that are imposed on the data by the mathematics involved in the model for the 

claim count data also apply to the paid loss data.  

STEP 1:  ENTER BASIC MODEL DATA 

To get started, select one of your segments using the Segment drop down box below the HOME ribbon.  

In the Navigation Pane, select the DATA | INPUTS | ALL INPUTS collection. Notice that the first three tables 

in the collection, Paid Loss, Case Loss Reserves and Incurred Loss, are white; these are the data entry 

tables. You can fill in any two of these tables and the third with change to tan, which means it will be 

filled automatically and that you cannot enter data here any longer. Similarly for the claim counts, you 

can fill in any two of the Closed Claims, Open Claims or Reported Claims tables and the third will be 

filled in automatically. 

 

Image 7-1: 

Reported Claim Count 
Triangle 

Note: 

You can use the  icon to 
switch between cumulative 
and incremental or the  
icon to switch between 
accident and calendar 
views, or both, prior to 
bringing in the data. 
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1. Enter data for the Reported Claims triangle (as illustrated in Image 7-1). You can either type in 

data or paste it in from another source. 

2. Enter data for the Paid Loss triangle (as illustrated in Image 7-2). You can either type in data or 

paste it in from another source. 

 

 

3. Also from the ALL INPUTS collection, you can enter Earned Premium and Exposure data, if you have 

that available (as illustrated in Image 7-3). Having this additional data allows the model to provide 

more information; this is especially true of Premium data, which allows the projection of ultimate 

loss ratios. 

 

 

4. In order to enter the Ultimate Premium data (again from the ALL INPUTS collection) you must open 

the table and click on the Source Data  icon in order to get to the Deterministic table used to 

estimate Ultimate Premium. This is illustrated in Image 7-4. 

 

Image 7-2: 

Paid Loss Data Triangle 

Note: 

The earned premiums are 
entered in a triangle so 
that they can be developed 
in the Deterministic 
portion of the system. 

Image 7-3: 

Earned Premium and 
Exposure tables 

Click on the 
Source Data 
icon to open 
the 
Comparison 
of Ultimate 
Premium 
Estimates 
table. 

 

Image 7-4: 

Ultimate Premiums and 
Comparison of Ultimate 
Premiums Estimates tables 
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5. In order to enter the Ultimate Claims data, you must first open the Object Library from the HOME 

ribbon, then in Navigation Pane within the Object Library open the DATA | RESULTS collection and 

select the Ultimate Claims table. Once you have the Ultimate Claims table open click on the 

Source Data  icon to get to the Deterministic table used to estimate Ultimate Claims. This is 

illustrated in Image 7-5. 

 

 

STEP 2:  REVIEW THE MODEL ASSUMPTIONS 

If you have not already done so, from the HOME ribbon select the Chose Models icon to select one or 

more of the Hayne MLE models, as illustrated in Image 7-6.  

 

 

Once a model has been selected, you can Run Diagnostics which will find the parameters and statistics 

for each model selected. Then from the Navigation Pane, select the STOCHASTIC | HAYNE MLE | 

Image 7-5: 

Ultimate Claims and 
Comparison of Ultimate 
Claims Estimates tables 

Image 7-6: 

Choose Models dialog, 
with Hayne MLE models 
selected 

Click on 
Source 
Data icon 
to open 
Comparis
on of 
Ultimate 
Claim 
Estimates 
table 
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INCREMENTAL SEVERITY | BERQUIST-SHERMAN collection45 and open the Fit Details window to review the 

assumptions as illustrated in Image 7-7. 

 

 

 

 

In the Fit Details window, there are four specific sections – i.e., the Cumulative Claim, Incremental 

Claim, Parameters and Fitted Incremental sections. The Cumulative Claim and Incremental Claim 

triangles are based on either the input Paid Loss triangle divided by the Ultimate Claims (for 

Incremental Severity models) or the Reported Claim triangle divided by the Ultimate Exposures (for 

Incremental Frequency models). The Parameters are calculated when you RUN DIAGNOSTICS based on the 

specific Hayne model and the Incremental Claim section data. The Fitted Incremental data is derived 

using the Parameters of the specific model (See Appendix A for examples). 

If you have not done so, save your file at this point. 

STEP 3:  EVALUATE YOUR DATA WITH THE MODEL’S DIAGNOSTICS 

The Hayne MLE models are based on fitting parameters to assumptions about the incremental values 

in a triangle. In order to increase the model’s predictive power, the data must be consistent with the 

assumptions that are inherent in the deterministic form of the model (or the model should be adjusted 

 

45 Within this manual we will be illustrating the Hayne MLE Berquist-Sherman model using Incremental Severity data, but the results for 
all other Hayne MLE models are consistent. The only difference between these models is the parameters which depend on the 
individual model assumptions as noted in Section 3 and Appendix A. 

Image 7-7: 

Hayne MLE Fit Details 
tables 

Image 7-7 (cont.): 

Hayne MLE Fit Details 
tables 
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to be consistent with the data). The diagnostic output includes a variety of tables and graphs to help 

test these assumptions and then to adjust the model options to improve the statistical fit of the model 

to the data.  

First, from the HOME ribbon, click on the RUN DIAGNOSTICS icon to populate the tables and graphs. In an 

iterative process, you will now want to analyze the diagnostic output, make adjustments to the model 

options, and then RUN DIAGNOSTICS again to update the diagnostics results. An additional part of this 

iterative process is to click on the RUN SIMULATIONS icon from the HOME ribbon to run the simulations for 

the segment you are analyzing. This will allow you to review the model output for the segment, make 

adjustments to the model options and then either run diagnostics or simulations again until you have 

optimized the model. 

For illustration purposes, we are using the BI data in the ODP_Mack_Hayne.apj file that is included 

with the system files in the C:\Users\username\Documents\Milliman\Arius\DemoFiles directory, where 

the username is your Windows user name.  

 

 

In the Navigation Pane, select the STOCHASTIC | HAYNE MLE | INCREMENTAL SEVERITY | BERQUIST-SHERMAN 

collection. The first diagnostic output is the standardized residuals shown in the Residuals table. The 

calculations for the residuals are described in Appendix A, although the residuals will be based on the 

data adjusted for exposures and/or stub periods (as illustrated in Image 7-8). As you can see in Image 

7-8, the standardized residuals for the Hayne MLE models are colored as a heat map similar to the 

Deterministic Age-to-Age factors. The difference is that the largest value overall is red and the smallest 

overall value is green, whereas for the development factors the colors are only based on the values in 

each development column. 

As a tool to help evaluate the residuals, each model collection includes a Residual Graphs window (as 

illustrated in Graph 7-1). These graphics show plots of the residuals (from Image 7-8) against the 

development, accident, and payment periods, as well as a plot of the residuals vs. the fitted (i.e., 

predicted) values. These will help you identify trends or other features in your data that may not be 

completely modeled, thus indicating that the Hayne MLE predictions from the data may be less than 

optimal. 

Image 7-8: 

Standardized Residuals 
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In the Hayne MLE models, new parameters for each iteration are sampled based on the mean, 

standard deviation (illustrated in Image 7-7) and variance-covariance matrix (not shown) parameters 

for that model. Unlike the ODP bootstrap model, the standardized residuals are calculated using the 

standard deviation of each development period, so heteroscedasticity (i.e., different variances) does 

not occur. Thus, there are no heteroscedasticity adjustment factors for the Hayne MLE models. 

STEP 3.A:  IDENTIFY AND EXCLUDE OUTLIERS 

 

 

The next diagnostics window, Normality, will help you judge the overall quality of the model and 

general improvement in the model if you exclude outliers. For example, look at Graph 7-2 below which 

corresponds to the plots shown above in Graph 7-1. As noted in Appendix B, the P-Value, R2, AIC and 

BIC values under the Normality (Q-Q) Plot and Box-Whisker Plot are a useful guide. You can also review 

these graphs before and after excluding outliers. 

If shown on the Box-Whisker plot, it might be reasonable to remove outliers from the model. When 

you do want to “remove” an outlier from the data, the procedure for doing so is to determine the 

Graph 7-2: 

Normality & Box-Whisker 
Plots 

Note: 

Removing outliers should 
be done with caution as 
this will usually reduce the 
“extremes” of the resulting 
model distribution. 

Graph 7-1: 

Plots of Residuals 
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correct cell(s) and identify it (them) with a one (“1”) in the corresponding cell(s) in the Outliers triangle 

(as illustrated in Image 7-9 for the largest and smallest residuals in Image 7-8). 

 

 

After the outlier(s) have been identified in this manner, use RUN DIAGNOSTICS again to update the tables 

and graphs. After the tables are graphs have been updated, the selected outlier(s) will no longer be 

visible in any of the graphs, but you can review the statistics in the Normality graphs (as illustrated in 

Graph 7-3) to see if they have improved (compare statistics in Graph 7-3 to Graph 7-2). 

 

 

You can still see which cell(s) have been given zero weight in the model by opening the Outliers table 

(Image 7-9) or by opening the Residuals (Image 7-10) or Fit Details (Image 7-11) windows. To restore 

an outlier (give it weight again), you must change the one(s) (“1”) in the Outliers table to a zero (“0”) 

and use RUN DIAGNOSTICS again.  

 

Image 7-9: 

Outliers triangle with two 
outliers selected 

Graph 7-3: 

Normality & Box-Whisker 
Plots, after excluding 
outliers 

Image 7-10: 

Standardized Residuals, 
after excluding outliers 
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In addition to the model diagnostics described above, the results output also has diagnostic features. 

Thus, running the model using RUN SIMULATIONS, reviewing the model output and adjusting model 

parameters and assumptions is part of the diagnostic process. Reviewing the model output is discussed 

in more detail in the remainder of this Section. 

Image 7-11: 

Hayne MLE Fit Details 
tables, after excluding 
outliers 
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SUMMARY OF OUTPUT 

The results for each model are shown in their own collection. For example, in the Navigation Pane, 

select the STOCHASTIC | HAYNE MLE | INCREMENTAL SEVERITY | BERQUIST-SHERMAN collection to view all of the 

simulation results for the Hayne MLE Berquist-Sherman Incremental Severity model.  

 

Estimated Unpaid Mean, Standard Error, Coefficient of 
Variation, Min, Max and Percentiles. 
Total Distributions and TVaRs. 

 

Total Unpaid Distribution Histogram and kernel density of total 
unpaid. 

 

Estimated Cash Flow Future calendar period payments. 

 

Estimated Run-off Total unpaid as future calendar 
periods are removed. 

 Estimated Ultimate Time zero to ultimate values 

 

Estimated Loss Ratios Time zero to ultimate loss ratios. 

 

Incremental Values Mean and standard deviation values 
for each incremental cell, historical 
and future. 

 

STEP 4:  EVALUATE THE OUTPUT FOR EACH MODEL 

After the model diagnostics have been set up and reviewed, the next step in the evaluation of each 

model is to use RUN SIMULATIONS to run the simulations for the segment you are analyzing. To illustrate 

the diagnostic elements of the simulation output we will review the results for the Hayne MLE 

Berquist-Sherman model. 

Estimated Unpaid Results 

The first diagnostic element of the Unpaid Table (illustrated in Table 7-1) can be seen by reviewing the 

Standard Error and Coefficient of Variation columns. As general rules, the standard error should go up 

as you move from the oldest years to the most recent years and the standard error for the total of all 

years should be larger than any individual year. In Table 7-1, the standard errors follow these general 

rules. For the coefficients of variation, they should go down when moving from the oldest years to the 
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more recent years and the coefficient of variation for all years combined should be less than for any 

individual year.46  The coefficients of variation in Table 7-1 also follow the general rules. 

 

 

The reason the standard errors (value scale) tend to go up is that they tend to follow the magnitude of 

the mean or expected value estimates. The reason the coefficients of variation (percent scale) tend to 

go down has more to do with the independence in the incremental claim payment stream. For the 

oldest accident year, there is typically only one (or a few) incremental payment(s) left so the variability 

of that payment(s) is (almost) fully reflected in the coefficient. For the most current accident year, the 

“up and down” variations in the future incremental payment stream can offset each other thus causing 

the total variation to be a function of the correlation between each incremental payment for that 

accident year (i.e., the incremental payments are assumed independent). 

The coefficient of variation rules noted above are a reflection of the step 6’s described in Section 3 

(and Appendix A), in the sense that they describe the process variance in the model. While the 

coefficients of variation should go down, if they do start going back up in the most recent year(s), then 

this could be the result of the following issues: 

1. The parameter uncertainty tends to increase when moving from the oldest years to the more 

recent years as more and more parameters are used in the model. In the most recent year(s), the 

parameter uncertainty could be “overpowering” the process uncertainty causing the coefficient of 

variation to start going back up. At the very least, the increasing parameter uncertainty will cause 

the rate of decrease in the coefficient of variation to slow down. 

2. If the increase in the most recent year(s) is significant, then this could indicate that the model is 

overestimating the uncertainty in those years. If this is the case, then an adjustment to the model 

parameters may be needed (e.g., limit incrementals to zero, etc.). 

While we mentioned the rules for the standard error and coefficient of variation for the total of all 

years, it is also worth noting that in addition to the correlation (independence) within each accident 

year the total of all years also includes the impact of the correlation (independence) between accident 

years. In essence, when one or more accident years are “bad” we do not expect all accident years to be 

 

46 These standard error and coefficient of variation rules are based on the independence of the incremental process risk and assume that 
the underlying exposures are relatively stable from year to year – i.e., no radical changes. In practice, random changes do occur from 
one year to the next which could cause the actual standard errors to deviate from these rules somewhat. In other words, these rules 
should generally hold true, but are not considered hard and fast rules in every case. Strictly speaking, the total all years rules assume 
that the individual years are not positively correlated. 

Table 7-1: 

Estimated Unpaid Model 
Output 

Note: 

For policy period data or 
incomplete accident period 
data, the unpaid data in 
the last row(s) will be 
reduced to only include 
earned exposures. 

Note: 

Caution should be 
exercised in the 
interpretation and 
adjustments for increases 
in the coefficient of 
variation in recent years. 
While keeping the theory 
in mind is appropriate, this 
must be balanced with the 
need to keep from 
underestimating the 
uncertainty of the more 
recent years. 
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“bad.”  To see this impact, you can add the accident year standard errors and note that they will not 

sum to the standard error for all years combined.47 

The next diagnostic element in the Unpaid Table is the Minimum and Maximum columns. In these 

columns, the smallest and largest values, respectively, from among all iterations of the simulation are 

displayed. These values can be reviewed judgmentally to make sure that they are not outside the 

“realm of possibility.” If they do seem a bit unrealistic then they could indicate the need to review the 

model options. For example, the presence of negative numbers might lead to changing one or both of 

the options which limit incremental values to zero. Sometimes “extreme” outliers in the results will 

show up in these columns and may also distort the histogram (discussed later in this Section). 

Risk Measures 

Also included in Table 7-1, notice that there are three rows of “Percentile” numbers and then four 

rows of TVaR numbers at the bottom of these tables under each of the percentile columns. For the 

three “Percentile” rows, the normal, lognormal and gamma distributions, respectively, have been fit to 

the Total unpaid claim distribution. The fitted mean, standard deviation and selected percentiles are 

shown under the Mean, Standard Error and Percentile columns, respectively, so that the smoothed 

results can be used to judge the quality of fit for each distribution or other purposes such as 

parameterizing a DFA model or using smoothed results in the tail of the distribution. 

The Tail Value at Risk (TVaR)48 is the average of all of the simulated values equal to or greater than the 

percentile value. For example, in Table 7-1 the 75th percentile value for the total unpaid for all accident 

years combined is 903,655 and the average of all simulated values that are greater than or equal to 

903,655 is 928,470. The “Normal TVAR,” “Lognormal TVaR” and “Gamma TVaR” rows are calculated 

the same way, except that instead of using the actual simulated values from the model the respective 

fitted distributions are used in the calculations. 

To interpret the TVaR numbers, the question we are trying to answer with a TVaR number is “if the 

actual outcome does exceed the X percentile value, on average how much might it exceed that value 

by?”  This is an important question related to risk based capital calculations and other technical aspects 

of enterprise risk management, although a more complete discussion is beyond the scope of this 

manual. It is worth noting, however, that the purpose of the normal, lognormal and gamma TVaR 

numbers is to provide “smoothed” values in the sense that some of the random noise is kept from 

distorting the calculations. 

Estimated Cash Flow Results 

In addition to the results by accident year, we can also review the model output by calendar year (or by 

future diagonal) in the Cash Flow table as illustrated in Table 7-2. Comparing Table 7-2 to 7-1, notice 

that the Total row is identical since the total is the same whether you add the parts horizontally or 

diagonally. Similar diagnostic issues can be reviewed in this table, except that the relative values of the 

standard errors and coefficients of variation move in the opposite direction for calendar years 

compared to accident years. This should make intuitive sense as the “final” payments projected the 

farthest out into the future should be the smallest yet relatively most uncertain. 

 

47 Likewise, the minimum, maximum and each of the percentile columns will not sum to the total for all years combined. In contrast, 
adding the mean values for each accident year will sum to the total for all years combined. 

48 The Tail Value at Risk is sometimes referred to as the Conditional Tail Expectation. 
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Estimated Unpaid Claim Runoff Results 

Another report similar to the Cash Flow table is the Run-off table. Rather than looking at individual 

diagonal results, the Run-off table starts with the total unpaid results and then looks at how the total 

unpaid will decrease over time as successive diagonals are removed, as illustrated in Table 7-3. 

Comparing Table 7-3 to 7-1 & 7-2, notice that the first row of Table 7-3 is identical to the Total rows in 

Tables 7-1 and 7-2. Each successive row in Table 7-3 is then the total of the remaining diagonals. 

 

 

Estimated Ultimate Results 

The next collection table is the Ultimate Table as illustrated in Table 7-4. Unlike the Unpaid, Cash Flow 

and Run-off tables, the values in the Ultimate Table are calculated from all simulated values, not just 

the values beyond the end of the triangles. In other words, since the model parameters are used to 

simulate the entire rectangle, we have enough information to estimate the complete variability in the 

ultimate values from day one in each accident year until all claims are completely paid and settled. 

 

 

Because we are using all simulated values, the standard errors in Table 7-4 should be proportionate to 

the means while the coefficients of variation should be relatively constant by accident year. 

Diagnostically, any increases in standard error and coefficient of variation for the latest few years will 

be consistent with the reasons cited earlier for the Unpaid Table. 

Table 7-2: 

Estimated Cash Flow 
Model Output 

Table 7-3: 

Estimated Unpaid Claim 
Run-Off Model Output 

Table 7-4: 

Estimated Ultimate Model 
Output 
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Estimated Ultimate Loss Ratio Results 

The next collection table shows the ultimate Loss Ratios by accident year as illustrated in Table 7-5. If 

there are no earned premiums or ultimate premiums input into the model, then this table will not be 

filled in since the model cannot calculate a loss ratio without the premium information.49 

 

 

Unlike the Unpaid, Cash Flow and Run-off tables, the values in the Loss Ratios table are calculated 

from all simulated values, not just the values beyond the end of the triangles. In other words, since the 

model parameters are used to simulate the entire rectangle, we have enough information to estimate 

the complete variability in the loss ratio from day one in each accident year until all claims are 

completely paid and settled.50 

Because we are using all simulated values, the standard errors in Table 7-5 should be proportionate to 

the means while the coefficients of variation should be relatively constant by accident year. 

Diagnostically, any increases in standard error and coefficient of variation for the latest few years will 

be consistent with the reasons cited earlier for the Unpaid Table. 

Estimated Incremental Results 

The next collection table is designed to help you take a deeper look at the simulations and to 

understand the reasons for increases in the coefficients of variation (in Tables 7-1 and 7-4). They show 

the mean and standard deviations, respectively, by accident year by development period. As illustrated 

in Table 7-6, both the Mean and Standard Deviation Incrementals can be reviewed down each column 

or across each row to look for any irregularities in the expected patterns. 

[Note that in some versions of Arius the Incrementals table may not be included in the standard Hayne 

MLE collections, and if not, you can add it to (drag it into) your project from the Object Library.] 

The Hayne MLE models use the same parameters for each incremental cell and as such the resulting 

mean and standard deviation in each cell is consistent with those model parameters, as illustrated in 

Table 7-6. 

 

49 Earned premiums are used as the denominator of the loss ratios. However, if earned premiums are not input then earned premiums 
are estimated from the ultimate premiums. 

50 If we are only interested in the “remaining” volatility in the loss ratio, then the values in the estimated Unpaid Table can be added to 
the cumulative values in the data input table and divided by the premiums. 

Table 7-5: 

Estimated Loss Ratio 

Model Output 

Note: 

For policy period data or 
incomplete accident period 
data, the unpaid data in 
the last row(s) will be 
reduced to only include 
earned exposures. 
However, since the earned 
exposures are divided by 
the Earned Premium to 
calculate the loss ratios we 
have a match of losses to 
premium. 
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Total Unpaid Distribution Graph 

The final model output from the simulations is a histogram of the estimated unpaid amounts for the 

total of all accident years combined, as illustrated in Graph 7-4. The Unpaid Graph, or histogram, is 

created by dividing the range of all values from the simulation (using the maximum and minimum 

values) into one hundred “buckets” of equal size and counting the number of simulations that fall 

within each “bucket.” Dividing by the total number of simulations (10,000 in this case) results in the 

frequency or probability for each “bucket” in the graph. 

Since the simulation results often look “jagged” (as they do in Graph 7-4) a kernel density function is 

also used to calculate a “smoothed” line fit to the histogram values. The kernel density distribution is 

represented by the blue line in Graph 7-4.51 

 

51 In simple terms, a kernel density function can be thought of as a weighted average of values “close” to each point in the “jagged” 
distribution with progressively less weight being given to values the further they are from the point being evaluated. For a more 
detailed discussion of Kernel density functions, see Wand & Jones, “Kernel Smoothing,” Chapman & Hall. 1995. 

Table 7-6: 

Estimated Incrementals by 
Accident Year by 
Development Period 
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STEP 5:  COMPARE GRAPHS FOR EACH MODEL 

If you are using more than one of the Hayne models, after all of them have been reviewed, open the 

Object Library from the HOME ribbon, then in Navigation Pane within the Object Library select MODELS 

| HAYNE MLE | INCREMENTAL SEVERITY and select the Summary Graph, as illustrated in Graph 7-5. The 

Summary Graph is created by combining the kernel density graphs from each of the Incremental 

Severity models. 

 

 

 

Graph 7-4: 

Total Unpaid Distribution 

Graph 7-5: 

Summary Graph 
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8. Evaluating Multiple Lines Together  

OVERVIEW: ODP BOOTSTRAP AGGREGATION 

In the Navigation Pane, select the ODP BOOTSTRAP AGGREGATION to aggregate the final results of all the 

LOBs (or segments) together, taking into account the estimated correlation among them.52  This 

section of the Navigation Pane has two collections.  

Assumptions | Correlation 

 User Selected Rank Correlation Matrix 

This table is the correlation matrix and degrees of freedom used in calculating the correlated 

aggregate results. This is where you select, edit, and/or enter the matrix to use when you are 

aggregating distributions. 

Also shown at the bottom of this table are the degrees of freedom for the T-distribution used in 

the correlation, which affects the strength of the correlation in the tail of the distributions. The 

degrees of freedom range between 1 and 99. 99 will give a correlation based on a normal 

distribution. As the degrees of freedom move closer to 1, the model will give a correlation based 

on a fatter tailed T-distribution. Having a fatter tail means that you expect stronger correlations in 

extreme outcomes, for a given level of correlation. 

 Rank Correlation of Simulated Results 

This table shows the correlation values from the simulation results; they provide some confidence 

that the simulated results match your intended correlation. 

 Calculated Rank Correlation of Residuals 

These are tables of the rank correlation based on the input data, both before and after 

adjustment for heteroscedasticity. These matrices are provided to help you select the correlation 

to use in calculating aggregate distributions. Each matrix of residual correlation factors also has a 

corresponding matrix of p-values; these provide a measure of the statistical significance of each 

correlation coefficient.  

The correlation statistics will be different depending on the Estimate Correlation Using option you 

select on the Model Options dialog. The default is MLE Copula, which uses a maximum likelihood 

estimation copula to solve for all correlations at once, including the degrees of freedom for the T-

distribution. The Pairwise option calculates the correlation between each pair of LOBs, but does 

not include a calculation of the degrees of freedom for the T-distribution, so a default value of 99 

is entered as part of the output. 

Results | Aggregate 

 This collection has all of the same tables and graphs of results as the individual model collections. 

The amounts here, however, are the totals of the weighted (and “shifted” if turned on) values for 

all segments, taking into account the effect of the User Selected Rank Correlation Matrix. 

 

52  Aggregation is used to combine only the weighted and/or shifted results for each segment. Thus, since weighting and shifting is 
currently only applicable for the ODP Bootstrap models the Mack Bootstrap and Hayne MLE models are not available for aggregation. 
When the Mack Bootstrap and Hayne MLE models are available for use in weighting and shifting (i.e., in a future release of Arius), they 
will also be included in the aggregation. 
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After you have analyzed each segment separately, it’s time to look at the combined total of all lines in 

the project. But as was noted earlier, it is not enough to simply add all the results together. In most 

cases, this will result in an unrealistic total distribution of unpaid claims, depending on the level of 

correlation among the various segments. In general, the aggregate distribution of unpaid claims can be 

materially narrower than the sum of the individual distributions, when the aggregate accounts for the 

effect of correlation between the segments. This difference between the correlated aggregate and the 

sum of the segments will not be as material in cases where the segments are all strongly positively 

correlated, where there is little variability in the individual distributions, or where one segment is far 

larger than the rest. 

In general, the process is as follows: 

 Complete the analysis of every segment, including model weights and selected (“shifted”) unpaid 

 Run Diagnostics for all Segments & Correlation 

 Select a correlation matrix to use in deriving the correlated aggregates 

 Run Simulations for all Segments & Aggregation 

STEP 0:  PREPARE EACH SEGMENT FOR CORRELATION CALCULATIONS 

The model calculates a series of correlation matrices for you to analyze or choose from. However, for 

the model to calculate these most effectively, each line of business should first be analyzed to make 

sure you have the best models for each line, as well as the weighted (and, if used, “shifted”) “best 

distribution.” 

STEP 1:  RUN ALL DIAGNOSTICS 

From the HOME ribbon, click on the RUN DIAGNOSTICS icon and select the RUN DIAGNOSTICS FOR ALL SEGMENTS 

& CORRELATION option. This will do two things: 

 it runs the diagnostics for all the segments in your project (to insure they are all up to date); and   

 it calculates four different correlation matrices that will then be available for review in the 

Correlation collection. 

The four correlation matrices will be different depending on the Estimate Correlation Using option you 

select on the MODEL OPTIONS dialog. The default is the MLE Copula option, which uses a maximum 

likelihood estimation copula to solve for all correlations at once, including the degrees of freedom for 

the T-distribution. In general, this option will tend to give a more robust solution since it is analyzing all 

of the data at once. However, it can be less than ideal when data is not used or missing for one or 

more segments. For example, if you are only using two year average age-to-age ratios for one segment, 

then only the data for the last three diagonals can be used in the estimation process. The maximum 

likelihood copula must only use data points that are common for every segment, so it is possible to 

have a situation where there is no data points common to every segment and the option will not work 

at all (e.g., one segment is in run-off for past 6 years [with no data for those years] and another only 

started up 5 years ago [with no prior data]). 

The Pairwise option calculates the correlation between each pair of LOBs, but does not include a 

calculation of the degrees of freedom for the T-distribution, so a default value of 99 is entered as part 

of the output. The advantage of this option is that the common data is only a requirement for each pair 

of segments, so even if a smaller amount of data is present for one segment it will only impact the 

correlation calculations for that one segment and not the rest of the pairs. 

Note: 

Whenever you select 
anything less than the all-
year average for the link 
ratios or exclude outliers, 
some of the residuals (that 
would otherwise be 
included) will be excluded 
from both the calculations 
for that LOB and the 
correlation matrix 
calculations. 
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STEP 2:  SET UP YOUR CORRELATION MATRIX 

The system needs a correlation matrix so it can factor in the effects of correlation among all your lines 

of business in the aggregate distribution. You must provide this information, based on your knowledge 

of the businesses involved and on the information you glean from the diagnostic matrices. 

In the Navigation Pane, select the ODP BOOTSTRAP AGGREGATION | ASSUMPTIONS | CORRELATION collection. 

This collection contains three different correlation matrix windows: 

 User Selected – where you enter or select your correlation factors 

 Simulated – a check on your selections 

 Calculated – tools to help you arrive at your selections 

Specifically: 

1. The User Selected Rank Correlation Matrix, illustrated in Image 8-1, contains the factors used to 

induce correlation in the simulated aggregate distribution. 

 

 

 Part of this matrix is a data entry area, signified by the white background.  

 The remainder of the matrix is a mirror of that data entry area, with 1’s down the center 

diagonal; this area is not available for data entry. 

 Each row or column represents a segment in the project file, and wherever rows and 

columns intersect the factor representing the expected correlation between those two lines 

is shown (thus the diagonal of 1’s down the center, as each line is perfectly correlated with 

itself). 

2. Enter the factors to represent the expected correlation between the lines of business. These are 

decimal numbers from 1 to -1, completely positively correlated to completely negatively 

correlated. 

The easiest way to do this is typically with one of the Quick Fill buttons. This allows you to 

automatically fill the matrix with a single value or with results from the system’s various 

diagnostic calculations as illustrated in Image 8-2. You can choose to fill the matrix with: 

 Fill with value – i.e., the same value for every cell 

  

Note: 

Some correlation matrices 
are theoretically not 
possible. For example, it is 
impossible for more than 
two lines of business to all 
be 100% negatively 
correlated with each other 
– i.e., a matrix of -1’s. 
When an impossible matrix 
is entered, the system will 
automatically adjust the 
matrix so that it will work. 

Image 8-1: 

User Selected Rank 
Correlation Matrix 
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 Fill with selected table – you can select: 

 values calculated from paid residuals before or after any heteroscedasticity 

adjustments, 

 values calculated from incurred residuals before or after heteroscedasticity 

adjustments, 

For example, a common approach might be to start with correlation factors based on paid data 

after heteroscedasticity adjustments; these are listed in the QUICK FILL drop down box as 

CorrAfterHeteroPaid. 

 

3. As with any similar decisions, you should review these factors to make sure they make sense 

based on your understanding of the data. For example, does it make sense for specific lines to be 

positively or negatively correlated, and if so, do the correlation factors in your matrix reflect that? 

You may not always want to change the factors, but you should at least review them. 

To help you assess the reasonableness of your chosen factors, with each of the four diagnostic 

correlation matrices the system also provides a corresponding matrix of p-values.  

 A large p-value (p>.05) indicates that the correlation is not significantly different than zero. 

Therefore, as a general rule, you could replace correlations with p-values >.05 with zeroes in 

your User Selected Rank Correlation Matrix unless you have a better way to estimate 

correlation between those lines.  

4. In the User Selected Rank Correlation Matrix enter the T-Dist DoF to be used in the correlation 

process. The degrees of freedom effectively allows you to select between two different 

distributions for the correlation process: 

 The normal distribution is used if you set the degrees of freedom to 99, or 

 The T-distribution is used if you set the degrees of freedom to between 98 and 1, inclusive. 

 The normal distribution is symmetrical so it gives symmetrical weight to the entire 

distribution during the correlation process, whereas the T-distribution will progressively 

strengthen the weight given to the “tail” of the distribution as the degrees of freedom moves 

from 98 toward 1. 

Image 8-2: 

Quick Fill Drop Down Box 
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5. In the User Selected Rank Correlation Matrix check the segments that you want to include in the 

Aggregate results. By checking and unchecking different groups of segments, this allows you the 

ability to create sub-aggregations for different divisions, legal entities or strategic business units 

within a group. 

STEP 3:  RUN THE CORRELATED SIMULATION AND REVIEW YOUR RESULTS   

1. From the HOME ribbon, click on the RUN SIMULATIONS icon and select the RUN SIMULATIONS FOR ALL 

SEGMENTS & AGGREGATION option. In a few minutes it will return with results for each segment and 

the aggregate results. 

2. Review your results for reasonableness. One of the first checks is to review the Rank Correlation 

of Simulated Results matrix.  

The Rank Correlation of Simulated Results table (illustrated in Image 8-3) should generally appear 

very similar to the correlation factors you selected when running the model. During the simulation 

process, the system sorts the results based on the correlation factors you selected. It then 

measures the correlation again using the sorted results. The resulting simulation correlation 

matrix appears as the second window in the CORRELATION collection. It helps provide a 

reasonableness check of some of the model’s calculations. If the factors in this matrix appear to 

be materially different from the factors you entered, then most likely either 

 you didn’t run enough iterations for the correlation to have its full effect (generally at least 

5,000), so change this and re-run, or  

 your selected correlation matrix doesn’t work and the model corrected it to the closest 

matrix that will work.53 

 

 

3. In the Navigation Pane, select the ODP BOOTSTRAP AGGREGATION | RESULTS | AGGREGATE collection. This 

collection contains an Unpaid Table, Cash Flow, Run-off, Loss Ratios, CDR and Incrementals 

tables as well as an Unpaid Graph for the aggregate of all lines you chose to include in the User 

Selected Rank Correlation Matrix. These are similar to the corresponding tables and graph for 

each segment. The mean of this distribution should be the same as the sum of the means of all 

the individual segments. However, as you look at the different percentiles, you will find 

divergence between the aggregate and the raw sum of the segments, with this difference being 

greater at the higher percentiles. These differences are illustrated in Graph C-1 in Appendix C. 

Like with the individual lines, remember that the model can be run iteratively with different correlation 

factors, allowing you to fine-tune your results to best match your understanding of the underlying 

business and to test the impact of different correlation assumptions. 

 

53 See the note on the prior page. In statistical terms a correlation matrix that “will work” is referred to as a positive semi-definite matrix, 
so if you entered a correlation matrix that is not positive semi-definite then the system will use an algorithm to find the positive semi-
definite matrix that is closest to your matrix. 

Note: 

If you selected one of the 
options (other than No) for 
Save Results to File in the 
Model Options dialog, 
then the model will take a 
little longer as it will also 
need to compile the data 
you requested. 

Image 8-3: 

Rank Correlation of 
Simulated Results 
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9. Working with Unusual Data 

Up to this point in the manual, the examples and illustrations have assumed that the data triangle and 

the exposures are completely symmetrical (i.e., the number of development periods and accident 

periods in the data triangle are identical and the lengths of all exposure periods are the same). 

Unfortunately, in many common analyses the exposures are not always symmetrical. Fortunately, 

however, the Milliman model can accommodate many common situations with non-symmetrical 

exposures. 

STUB PERIOD TRIANGLES 

One of the most common situations is the analysis of data with a stub period – i.e., where the last 

diagonal is not the same as the rest of the triangle. For example, with an annual x annual triangle the 

development intervals are 12/24/36/... for a year end analysis, but when an interim analysis is 

performed as of June 30 the last diagonal has development intervals of 6/18/30/… As noted in Section 

4, from the HOME ribbon select the PROJECT SETTINGS icon which opens the PROJECT SETTINGS dialog box 

to the Data Structure tab (as illustrated in Image 9-1). 

 

 

In order to specify the stub period, the Length of Last Calendar Period (in Months) will be different 

than the Length of Development Periods setting, but the First Development Age (in Months) will still be 

consistent with the Length of Development Periods setting. For example, in Image 9-1 the Length of 

Last Calendar Period (in Months) is set to 6 in order to specify a June 30 analysis while the overall data 

structure is based on annual x annual data. 

Image 9-1: 

Project Settings Dialog Box 
(with Stub Period) 
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With a stub period specified in the PROJECT SETTINGS dialog box, the model will automatically make 

several adjustments to the normal model simulation steps. In order to illustrate the adjustments, we 

will discuss the changes to the Paid Chain Ladder model simulation as described in Section 3 (and 

Appendix A). The changes to the other models are essentially the same so will not be illustrated in 

detail, although a few comments are included for completeness. 

1. Use a triangle of cumulative paid losses as input. Calculate a triangle of age-to-age development 

factors.  

 When the last incremental diagonal is a stub period, actuaries ordinarily exclude this from 

the age-to-age calculations. 

 However, in Arius incremental values in the last diagonal are grossed-up to estimate a full 

period’s worth of data and included in the age-to-age factor calculation. 

 The gross-up factors are calculated using assumptions of linear earnings and are therefore 

different for accident period and policy period data. 

 The gross-up factors are also adjusted for actual earnings by comparing Earned Premium to 

Ultimate Premium by year if included. 

2. Calculate a new triangle of “fitted values” – i.e., use the age-to-age factors to “undevelop” each 

value in the latest diagonal to form a new triangle of values predicted by the model assumptions. 

 The fitted values use the grossed-up last diagonal and the age-to-age factor calculation from 

step 1 that includes the grossed-up diagonal. 

3-4.  Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are called “unscaled Pearson residuals” in the 

model. These are then standardized using the hat matrix adjustment factors resulting in 

“standardized Pearson residuals”. 

 The model uses the grossed-up last diagonal values so that all residuals represent the same 

amount of exposure. 

5. Create a new incremental sample triangle by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals. 

 The sample triangles include the grossed-up last diagonal values since they are based on the 

fitted values from step 2 and the residuals in step 4. 

6. Develop and square that sample triangle, adding tail factors, and estimating ultimate losses. 

 The incremental values in the last diagonal for the sample triangle are “reduced” to match 

the exposures of the original stub period triangle. 

 The complements of the “reduced” incremental values in the last diagonal are added to the 

incremental values in the next future diagonal. Similarly, each future diagonal has a portion 

“reduced” to adjust for the exposure and added to the next future diagonal, so that the 

future incremental development periods match the exposures along the last historical 

diagonal. For example, if the last diagonal has development dates of 6/18/30/…, then after 

this “reallocation” process the future incremental values will be converted from 12/24/36/… 

development to 6/18/30/… development. 

 For the most recent accident period (or for several of the recent policy periods), the ultimate 

value represents a full period of exposure, so the future incremental values are “reduced” to 

exclude the exposure beyond the evaluation date using assumptions of linear earnings or 

actual earnings if Earned and Ultimate Premiums are included. 
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 For the Bornhuetter-Ferguson and Cape Cod models, the ultimate values are calculated using 

the Ultimate Premiums to match the grossed-up exposures of the last diagonal, then the 

exposure reduction portion of the algorithm is applied. 

7. Add process variance to the future incremental values from Step 6 (which will change the 

estimated ultimate to a possible outcome). 

 The future incremental values will have the same development period length as the original 

data, but the starting point for the development will be “shifted” to match the exposures of 

the last diagonal. For example, for the analysis in Image 9-1, the future periods will be 

18/30/42.... 

8. Calculate the total future payments (estimated unpaid amounts) for each year and in total for this 

iteration of the model. 

 The unpaid estimates are consistent with the “shifted” periods from step 7. 

9. Repeat the random selection, new triangle creation, and resulting unpaid calculations in Steps 5 

through 8, X times. 

 

The result from the X simulations is an estimate of the distribution of possible outcomes. From this we 

can calculate the mean, standard deviation, percentiles, etc. 

 The distributions are consistent with the “shifted” periods from step 7 and the “reduced” 

exposures for step 6. 

 The loss ratio distributions use the Earned Premiums in order to match exposures of losses with 

revenue. 

SHORT FIRST DEVELOPMENT PERIOD TRIANGLES 

Another common situation is the analysis of data with a shortened first development period – i.e., 

where the development period in the first column is not the same as the rest of the triangle. For 

example, with an annual x annual triangle the development intervals are 12/24/36/... for a year end 

analysis, but when an interim analysis is performed as of June 30 the column development intervals of 

6/18/30/... are used for all data when the first development column is shortened. As noted in Section 

4, from the HOME ribbon select the PROJECT SETTINGS icon which opens the PROJECT SETTINGS dialog box 

to the Data Structure tab (as illustrated in Image 9-2). 
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In order to specify the short initial development period, the First Development Age (in Months) will be 

different than the Length of Development Periods setting, but the Length of Last Calendar Period (in 

Months) will still be consistent with the Length of Development Periods setting.54  For example, in 

Image 9-2 the First Development Period (in Months) is set to 6 in order to specify a June 30 analysis 

based on annual x annual data with a short initial development period. 

With a short initial development period specified in the PROJECT SETTINGS dialog box, the model will 

automatically make several adjustments to the normal model simulation steps. In order to illustrate 

the adjustments, we will discuss the changes to the Paid Chain Ladder model simulation as described in 

Section 3 (and Appendix A). The changes to the other models are essentially the same so will not be 

illustrated in detail, although a few comments are included for completeness. 

1. Use a triangle of cumulative paid losses as input. Calculate a triangle of age-to-age development 

factors.  

 No adjustments are required for this step. 

2. Calculate a new triangle of “fitted values” -- i.e., use the age-to-age factors to “undevelop” each 

value in the latest diagonal to form a new triangle of values predicted by the model assumptions. 

 No adjustments are required for this step. 

3-4. Working from the incremental versions of these triangles, calculate a triangle of residuals using 

the fitted triangle and the original data. These are called “unscaled Pearson residuals” in the 

 

54 As a technical note, it is possible to specify both a short initial development period and a stub period along the last diagonal by 
specifying a Length of Last Calendar Period (in Months) that is less than the First Development Age (in Months). The Milliman Arius 
model will work in this situation and will adjust for both of these as described in the two subsections in Section 9, but we will not 
describe it as a separate unusual situation since it is far less common. 

Note: 

The column headings in 
the development tables 
will reflect the data in the 
analysis (e.g., 6/18/30/...) 
since they are the same for 
all columns and rows. 

Image 9-2: 

Project Settings Dialog Box 
(with short first 
development period) 
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model. These are then standardized using the hat matrix adjustment factors resulting in 

“standardized Pearson residuals”. 

 No adjustments are required for these steps. 

5. Create a new incremental sample triangle by selecting randomly with replacement from among 

the triangle of standardized Pearson residuals. 

 No adjustments are required for this step. 

6. Develop and square that sample triangle, adding tail factors, and estimating ultimate losses. 

 For the most recent accident period (or for several of the recent policy periods), the ultimate 

value represents a full period of exposure, so the future incremental values are “reduced” to 

exclude the exposure beyond the evaluation date using assumptions of linear earnings or 

actual earnings if Earned and Ultimate Premiums are included. 

 For the Bornhuetter-Ferguson and Cape Cod models, the ultimate values are calculated using 

the Ultimate Premiums to match the grossed-up exposures of the last diagonal, then the 

exposure reduction portion of the algorithm is applied. 

7. Add process variance to the future incremental values from Step 6 (which will change the 

estimated ultimate to a possible outcome). 

 The future incremental values will have the same development period length as the original 

data, with the starting point for the development consistent with the original exposures. For 

example, for the analysis in Image 9-2, the future periods will be 18/30/42.... 

8. Calculate the total future payments (estimated unpaid amounts) for each year and in total for this 

iteration of the model. 

 The unpaid estimates are consistent with the original exposure periods from step 7. 

9. Repeat the random selection, new triangle creation, and resulting unpaid calculations in Steps 5 

through 8, X times. 

The result from the X simulations is an estimate of the distribution of possible outcomes. From this we 

can calculate the mean, standard deviation, percentiles, etc. 

 The distributions are consistent with the original exposure periods from step 7 and the “reduced” 

exposures from step 6. 

 The loss ratio distributions use the Earned Premiums in order to match exposures of losses with 

revenue. 

MISSING VALUES 

Another common data issue is missing values. For example, while the PROJECT SETTINGS dialog specifies 

the “dimensions” for every triangle in the analysis for every segment, you could have started writing 

business for some segments after the rest or some might be discontinued and in runoff. Other 

common issues resulting in missing values are calendar periods that start after the initial accident (or 

policy) period, which results in a “missing triangle” in the upper left corner, or simply having a few 

missing values somewhere in the middle of the triangle. 

If the dataset has missing values, then these should be left blank. Do not fill them in with zeroes, unless 

they are truly a zero value. As noted in Section 5, blank cells are acceptable anywhere in the triangle 

except on the most recent two diagonals. The Arius system understands that a blank cell is different 

than a zero and functions accordingly. 
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MISSING WHOLE COLUMNS 

The model must be able to calculate development factors at each point in the triangle. Therefore, 

whole missing columns are not allowed for the ODP Bootstrap and Mack Bootstrap models. However, 

the Hayne MLE models will work with a missing column. 

WHOLE COLUMNS OF ZEROES 

The model can handle columns of zeroes only if they are sequential and start from the first 

development column. For example, there cannot be a column of zeroes in the middle of your 

cumulative triangle, with non-zero columns on either side. An incremental column of zeroes is 

acceptable in the middle of a triangle. 
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10. Frequently Asked Questions 

WHAT CAN CAUSE A SIMULATION TO RUN UNSUCCESSFULLY? 

My simulation appeared to run. Why did my Unpaid Table, Cash Flow, etc. exhibits remain empty? 

I thought I filled in all the necessary data for the model. So why did I receive a “Job Failed” message 

when I simulated a line of business? 

A number of issues or data interrelationships can prevent the simulation from successfully completing. 

When a model fails to run successfully, you should receive descriptive information back from the 

system.  

In addition, here are some of the more common causes of models failing to run: 

1. What you MUST have for ALL models to run: 

 All cells in the Heteroscedasticity Adjustment Groups table must contain values.  

 For your first test simulation you can run with all zeroes, just to calculate an initial set of 

diagnostics. 

 You must enter a Mean Tail Factor for whichever model you are simulating with either the 

ODP or Mack bootstrap models (Hayne does not currently include tail extrapolation).  

 You need both Paid and Incurred data and options filled in if you are simulating based on 

Incurred data. 

2. If Extrapolate Tail Factor is checked, then  

 Exponential Decay Factor must be provided 

3. If Enable Exposure Adjustment is checked, then 

 Ultimate Exposure data must be provided, and  

 if you have a blank cell in your Ultimate Exposure data, you cannot have data on that same 

row in your Paid or Incurred triangles. 

4. It is impossible for the model to calculate Degrees of Freedom (DoF) with very small triangles (e.g., 

4 x 4 or smaller). It also may not be able to calculate the DoFs if you have larger triangles (e.g., 6 x 

6) but have excluded several residuals as part of your diagnostic analysis. 

5. Hetero groups must have at least 2 residuals that are not selected as outliers and are not zero. For 

instance, the last development period will always have one residual of zero. This cannot be 

selected as a group by itself. 

IS THERE A DIFFERENCE BETWEEN RUNNING DIAGNOSTICS AND RUNNING 

SIMULATIONS? 

Yes. The analysis process contains two distinct phases, and these two system operations reflect these 

different phases. You must use both diagnostics and simulation functions to get to a final distribution 

estimate. 

1. Run Diagnostics for Segment and Run Diagnostics for All Segments & Correlation are essential 

steps in preparing your model for simulation; they do not perform the simulation. They provide 

you the necessary information to allow you to evaluate the quality of your model, to understand 

how well your data fits the models, and to adjust the models for the optimal possible fit. They fill 

Note: 

Running the simulations 
will NOT update your 
diagnostics. 

Note: 

The simulations should run 
using the default settings, 
but it will NOT update your 
diagnostics. 
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the DIAGNOSTICS collection tables and graphs, providing incremental data, age-to-age factors and 

averages, residuals, and the graphics that allow you to identify potential adjustments before you 

run a simulation. 

Note that Run Diagnostics for All Segments & Correlation also calculates the correlation between 

the various lines of business, and returns various correlation matrices to the ODP Bootstrap 

Aggregation | Assumptions | Correlation collection. 

2. The simulation functions – Run Simulations for Segment and Run Simulations for All Segments & 

Aggregation – perform the actual stochastic projections to ultimate (or time horizon, if selected), 

and return results to the Arius system. You will use the Simulation function(s) after you have 

reviewed the results of the diagnostic calculations and understand the quality of the model fit with 

your data. The Simulation functions only return results to the model specific collections by 

segment (for the selected models) and Aggregate Results collection. They do not return values to 

any of the DIAGNOSTICS collection tables or graphs.  

CAN I MODEL TRIANGLES OF DIFFERENT SIZES & SHAPES TOGETHER IN THE SAME 

PROJECT? 

Yes, as long as the triangles have the same ‘as of’ dates and the same stub periods or short first period, 

if any. They must also all have the same initial development period and the same development length 

(e.g., if one LOB is 9-21-33 development, all LOBs should contain this type of data). For instance, you 

can have a 10x10 triangle and a 5x5 triangle in the same workbook. The top 5 rows of the segment 

with the 5x5 triangle will be blank. When specifying the inputs for a new project you should always 

define the shape based on the size of the largest triangle. 

If you have a 10x10 triangle and a 5x10 triangle (e.g., in run-off) then you would specify inputs as 10x10 

triangles. If you do that, you have to remain cognizant of the implications on the model. For example, if 

you specify a weighted average of the last 3 years, then the shaded cells in blue will be factored into 

the calculations, as illustrated in Image 10-1. 

 

To get around this, select an all year weighted average, or specify a 5x10 triangle in the inputs. 

However, this prevents the model from also containing the 10x10 triangle. 

 

Image 10-1: 

Triangle in run-off. Shaded 
cells used in 3-year average 
age-to-age ratios. 

Image 10-2: 

Triangle size 5x10. 

Note: 

Running the simulatios will 
NOT update your 
diagnostics. 
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HOW ARE TAIL FACTORS APPLIED IN MY MODEL? 

For each iteration, the first step is to sample a random tail factor using the distribution, mean and 

standard deviation specified in the Tail Factor window in the DIAGNOSTICS collection, assuming random 

tail factors are enabled (i.e., the Enable Tail Factor Distribution option is checked). Otherwise, the 

mean tail factor is used in each iteration. Then, if both a minimum and/or maximum value are entered 

and the limits are enabled (i.e., the Limit Tail Factor with Min/Max option is checked), the sampled tail 

factor is compared to the minimum and/or maximum and limited if needed. 

Next, if extrapolation is enabled (i.e., the Extrapolate Tail Factor option is checked) the decay rate is 

applied to extrapolate the limited sampled tail factor up to the Number of Periods in Extrapolation 

and calculate the incremental age-to-age factors as illustrated in Section 5 and Image 5-8.55 These 

[random], [limited], [extrapolated] age-to-age factors are applied along with the calculated average 

age-to-age factors in the appropriate step(s) for each model to square the triangle and project an 

ultimate point estimate. 

Finally, process variance is added using the selected option to convert all future incremental values to 

possible outcomes. Note that the hetero group selected for the last development period in the triangle 

is applied to all the future periods that use the [random], [limited], [extrapolated] tail factor. 

For the ODP Process and ODP Residual algorithms, the resulting possible outcomes (described just 

above) are used up to the Nth future diagonal when calculating updated average age-to-age factors, 

and any remaining [random], [limited], [extrapolated] age-to-age factors beyond the Nth future 

diagonal, if any, are used to calculate the remaining point estimates. 

For the Mack Bootstrap Time Horizon algorithm, the [random], [limited], [extrapolated] age-to-age 

factors are used within the diagonal by diagonal iterative process up to the Nth future diagonal and 

any remaining [random], [limited], [extrapolated] age-to-age factors beyond the Nth future diagonal, if 

any, are used to calculate the remaining point estimates. 

HOW DO I EXCLUDE AN OUTLIER FROM MY MODEL? 

You can potentially improve the fit of your model by eliminating certain outliers from the simulation 

process in any of the ODP bootstrap models. 

Outliers in the residuals can be identified in either the Residual Graphs, in the Normality Plot or in the 

Box-Whiskers plot. Though they are most clearly identified in the Box-Whisker Plot (that’s the main 

reason for this plot) if a point is a significant outlier, it will show up clearly in all three diagnostic 

exhibits. 

If a point is both materially outside the range of the other residuals, and you want to give it no weight 

in the model’s calculations, you should identify that point to the system. 

 It is generally advisable to identify hetero groups first and rerun the diagnostics. This step will 

often eliminate potential outliers, or for example may eliminate two of your three outliers, leaving 

you with only one outlier to evaluate for potential elimination from the model. 

 Find the potential outlier(s) in the Box-Whiskers plot After Heteroscedasticity adjustments. You 

can find that same cell(s) in the Residual Graphs and simply click on the dot in one of the four 

plots, which will change the color from green to red. Clicking on a dot will place a “1” in the 

 

55 The illustration in Section 5 and Image 5-8 is for the mean, but the calculation for each iteration will be based on the [random], 
[limited] tail factor. 
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corresponding cell in the Outliers table. Conversely, you can directly change the value in the 

appropriate cell in the Outliers table and it will “mark” the dots in the Residual Graphs by 

changing their color to red (or green). 

 Eliminate the effects of this point on the model by running diagnostics to recalculate all of the 

diagnostics statistics after giving zero weight to the identified outliers. 

Note that outliers should be reviewed carefully, and should generally only be removed from the model 

when they represent an occurrence that would not be assumed to happen again with this data set. 

Certain outlier-type events are inherent in the nature of many insurance lines and the model is often 

more realistic when it includes the additional skewness that their presence provides. 

BLANK CELLS 

Are blank cells treated as zeroes in the model?   

What do I need to understand about blank cells? 

Blanks are treated differently in different places within the model, depending on the most appropriate 

and expected definition in each specific context. 

 The model’s residual calculations are based on incremental data. When there is a blank cell in the 

cumulative triangle, the model cannot determine what the related incremental value is for that 

cell nor can it determine the incremental value in the next cell to the right. Thus both cells are left 

blank in both the incremental triangle and the residual triangles. 

 Blanks are treated the same as zeroes in the Outliers triangle. 

 A blank cell is not allowed in either the most recent or next-to-most recent diagonal if there is any 

other data elsewhere on that same row in the triangle. 

 Blanks are not treated as zeroes in LDF calculations. If you are using a 5-year average, and there is 

a blank cell among the most recent five values, the system will use only four values; it will not 

reach back and pick up another value to make up five, and it will not count the blank as a zero and 

keep the same number (5) as the denominator. 

 Also, extending the above item, if you have data for a run-off triangle (say, 24 columns x 20 rows, 

with the bottom four rows missing) and you place that data into a fully dimensioned triangle 

space (say, 24 x 24), the bottom four cells in the first four columns will be blanks. However, the 

LDFs for this triangle will be calculated as if it were a 24x24 triangle instead of a triangle in run-off. 

This is not an issue if you are selecting an all year weighted average. To get the correct 

development factor calculations, if at all possible you should define the size and shape of the data 

triangle to match the data you will be using. If you are entering 24x20 runoff data, then you 

should specify a 24x20 triangle in the PROJECT SETTINGS dialog. 

WHEN I PASTE A TRIANGLE INTO ARIUS I LOSE FORMATTING FROM THE ORIGINAL 

TEMPLATE. HOW DO I PREVENT THIS? 

Whenever pasting data into the Arius tables from other sources, none of the original formatting is 

retained to make sure that Arius’ formatting stays intact. 
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CAN INPUT DATA BE LINKED TO ARIUS FROM ANOTHER FILE, RATHER THAN 

ENTERED DIRECTLY INTO A TRIANGLES? 

No, the data entry areas can’t be linked to cells in other programs such as an Excel. However, the 

Application Programming Interface (API) can be used to pull data into Arius from another source or 

push data or results back out to another source. In addition, Arius can import data and other model 

settings from either ReservePro or RVM. 

HOW DO I REDUCE PROCESSING TIME? 

Model Weights and set Save Results to File both require significant computer resources to run. If you 

can remove those selections from at least some runs, those runs will be noticeably faster than if the 

options are turned on. 

HOW DO I GETTING A DISTRIBUTION OF IBNR INSTEAD OF UNPAID LOSS? 

The ODP bootstrap’s Incurred Model is designed to output a distribution of total unpaid, including case 

reserves, so that it is comparable to the paid model. If you want to simulate a distribution of IBNR (i.e., 

unpaid excluding case reserves) you can enter the incurred data in the paid data input array and run 

the paid model with incurred data. 
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Appendices 

A. Examples of the Basic Calculations 

A WALKTHROUGH OF THE BASIC CALCULATION BASED ON PAID LOSS DATA 

STEP 1. 
BUILD A BASIC DEVELOPMENT 
MODEL. 

Use the standard chain-ladder 
method and the all-period 
volume-weighted average (VWA) 
to calculate age-to-age factors. 

 
CUMULATIVE PAID LOSS DATA 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750   

2011 279 638 767     

2012 311 717       

2013 308         

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.264 1.265 1.101 1.095 1.000 

  

STEP 2. 
CREATE A “FITTED” TRIANGLE. 

Start with the most recent 
cumulative diagonal and “un-
develop” backwards using the 
appropriate VWAs. 

 

 

 
TRIANGLE FITTED BACKWARDS FROM LATEST DIAGONAL 

 12 24 36 48 60 

2009 375 849 1,074 1,183 1,295 

2010 238 538 681 750   

2011 268 606 767     

2012 317 717       

2013 308         
 

STEP 3.  
CALCULATE PEARSON 
RESIDUALS. 

Working from the incremental 
forms of both triangles, subtract 
the fitted from the actual amount 
for each cell. Divide each result by 
the square root of the fitted 
amount.56  This results in 
“unscaled Pearson residuals.” 

)ˆ(

ˆ

mabs

mC
rUP




 

C = actual incremental amount 

 m̂ = fitted incremental for 

matching location in each triangle 

 

 
UNSCALED PEARSON RESIDUALS 

 12 24 36 48 60 

2009 -1.18 -1.97 2.45 2.78 0.00 

2010 1.12 0.96 -0.40 -3.50   

2011 0.69 1.12 -2.51     

2012 -0.32 0.28       

2013 0.00         
  

 

56 While the theory uses the square root of the fitted amount, by using the square root of the absolute value of the fitted amount we can 
include negative incremental amounts without any material impact. 



Examples of the Basic Calculations  Milliman 

128 Arius Stochastic User Guide 

STEP 4a. 
STANDARDIZE THE RESIDUALS. 

Multiply each unscaled residual by 
the hat matrix adjustment factor.57 

fij = 

1

1 ijh
 

hij = the diagonal of the hat matrix 
H 

 

H = X(XTWX)-1XTW 

X = the design matrix from the 
Generalized Linear Model (GLM) 

W = the weight matrix from the 
GLM 

 

 

 

HAT MATRIX ADJUSTMENT FACTORS 

 12 24 36 48 60 

2009 1.4922 1.6088 1.4725 1.6849 1.0000 

2010 1.3675 1.4675 1.3033 1.3415   

2011 1.4172 1.5350 1.3485     

2012 1.5606 1.7546       

2013 1.0000         

 

STANDARDIZED PEARSON RESIDUALS 

 
12 24 36 48 60 

2009 -1.76 -3.17 3.60 4.69 0.00 

2010 1.54 1.40 -0.53 -4.69   

2011 0.98 1.72 -3.39     

2012 -0.50 0.50       

2013 0.00         
 

STEP 4b. 
CALCULATE THE SCALE 
PARAMETER. 

N = number of observations (less 
outliers) 

p = number of parameters in the 
model (typically the  number of 
columns in the data triangle + the 
number of rows in the data 
triangle + the number of additional 
hetero groups – 1) 

 

 

 
ADDITIONAL STATISTICS CALCULATED 

Pearson chi-squared statistic = sum of squares of unscaled Pearson residuals 

  = 41.82   

      

Degrees of freedom  = # of observations in the model minus # of 
parameters ( # columns  +  # rows – 1) 

  = 15 – 9 = 6   

      

Scale parameter = chi-squared statistic ÷ degrees of freedom 

  = 6.97   
 

 

  

 

57  See Pinheiro, Paulo J. R., João Manuel Andrade e Silva and Maria de Lourdes Centeno. 2001. Bootstrap Methodology in Claim 
Reserving. ASTIN Colloquium. As a technical issue, our model uses matrix decomposition rather than matrix multiplication, which is 
numerically equivalent yet more stable. 
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SIMULATION STEPS: 
 

STEP 5.  
RANDOMLY CREATE A NEW 
TRIANGLE OF “SAMPLE” DATA. 

5a. Build a new triangle by 
randomly selecting (with 
replacement) from among the 
non-zero standardized Pearson 
residuals in Step 4a.58 

5b. Create a triangle of sample 
data based on the randomly 
selected residuals. For each cell: 

mmabsrC SP
ˆ)ˆ(' 

 

 
RANDOMLY SELECTED RESIDUALS 

 12 24 36 48 60 

2009 1.54 -0.50 -3.39 -0.50 1.54 

2010 -3.17 -3.17 1.54 -4.69  

2011 -0.53 4.69 -0.50   

2012 1.40 1.54    

2013 4.69     

 

SAMPLE INCREMENTAL TRIANGLE CALCULATED BASED ON THE RANDOM 
RESIDUALS 

 12 24 36 48 60 

2009 405 463 174 104 128 

2010 189 246 161 30  

2011 259 425 155   

2012 342 431    

2013 390     

  

STEP 6.  
COMPLETE THE NEW 
RANDOMLY-GENERATED 
TRIANGLE. 

Calculate new VWAs and use 
them to complete the bottom 
right of the triangle. 

NOTE: A randomly generated tail 
factor could also be applied here 
to extrapolate future 
development periods – i.e., 
beyond 60 months in this 
example. 

 

 

 

 

 

 

 

 
SAMPLE CUMULATIVE TRIANGLE 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626  

2011 259 684 838   

2012 342 773    

2013 390     

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.310 1.247 1.082 1.112 1.000 

 

COMPLETED CUMULATIVE TRIANGLE WITH FUTURE EXPECTED PAYMENTS 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626 696 

2011 259 684 838 907 1,008 

2012 342 773 963 1,042 1,159 

2013 390 902 1,124 1,216 1,352 
 

 

58 As noted in Section 3, Step 5, this is the default option for randomly simulating a new triangle with the same statistical properties as 
the original data. Other options for simulating a new triangle are described in Section 5, but are not illustrated here. 
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STEP 7. 
INTRODUCE PROCESS VARIANCE. 

Calculate the incremental 
payments in the future payment 
stream from the cumulative 
completed triangle. 

To add process variance in the 
simulation, replace every future 
incremental paid amount with a 
randomly selected point from a 
gamma distribution59 where: 

Mean = the incremental paid loss 
amount 

Variance = Mean  x  Scale 

Parameter  (see Step 4b) 

 
COMPLETED INCREMENTAL TRIANGLE  

 12 24 36 48 60 

2009 405 463 174 104 128 

2010 189 246 161 30 70 

2011 259 425 155 68 102 

2012 342 431 191 79 117 

2013 390 511 223 92 136 

 

RANDOMLY GENERATED FUTURE INCREMENTAL PAYMENTS BASED ON ABOVE 

 12 24 36 48 60 

2009      

2010        68 

2011      58 80 

2012    194 84 127 

2013  469 235 79 160 

  

STEP 8. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,556). 

This provides one estimated 
possible outcome. 

 
TOTAL ESTIMATED FUTURE INCREMENTAL PAYMENTS 

 12 24 36 48 60 TOTAL 

2009       

2010        68 68 

2011      58 80 138 

2012    194 84 127 406 

2013  469 235 79 160 944 

      1,556 

  

STEP 9. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 8 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  71   30   42.3% 

2011  159   47   29.4% 

2012  379   78  20.6% 

2013  763  159  20.9% 

  1,372  213  15.6% 
 

 

59  As a technical note, the gamma distribution is used as an approximation to the over-dispersed Poisson. The use of volume weighted 
average age-to-age factors is derived from the GLM assumption of an over-dispersed Poisson distribution, but the gamma is a very 
close approximation and runs much faster in simulation software. When the mean is negative, the absolute value is used and then 
twice the absolute value of the mean is subtracted from the random sample in order to produce a negative result while keeping the 
shape of the distribution skewed to the right. 
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A WALKTHROUGH OF THE BASIC CALCULATION BASED ON INCURRED LOSS DATA 

STEP 1. 
BUILD A BASIC DEVELOPMENT 
MODEL. 

Use the standard chain-ladder 
method and the all-period 
volume-weighted average (VWA) 
to calculate age-to-age factors. 

 
CUMULATIVE INCURRED LOSS DATA 

 12 24 36 48 60 

2009 715 1,077 1,184 1,285 1,295 

2010 654 794 804 835   

2011 655 886 910     

2012 837 937       

2013 747         

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

1.291 1.051 1.066 1.008 1.000 

  

STEP 2. 
CREATE A “FITTED” TRIANGLE. 

Start with the most recent 
cumulative diagonal and “un-
develop” backwards using the 
appropriate VWAs. 

 

 

 
TRIANGLE FITTED BACKWARDS FROM LATEST DIAGONAL 

 12 24 36 48 60 

2009 888 1,146 1,205 1,285 1,295 

2010 577 745 783 835   

2011 671 866 910     

2012 726 937       

2013 747         
 

STEP 3.  
CALCULATE PEARSON 
RESIDUALS. 

Working from the incremental 
forms of both triangles, subtract 
the fitted from the actual amount 
for each cell. Divide each result by 
the square root of the fitted 
amount. This results in “unscaled 
Pearson residuals.” 

)ˆ(

ˆ

mabs

mC
rUP




 

C = actual incremental amount 

m̂ = fitted incremental for 

matching location in each triangle 

 

 
UNSCALED PEARSON RESIDUALS 

 12 24 36 48 60 

2009 -5.80 6.44 6.32 2.35 0.00 

2010 3.21 -2.16 -4.55 -2.91   

2011 -0.60 2.56 -3.05     

2012 4.13 -7.66       

2013 0.00         
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STEP 4a. 
STANDARDIZE THE RESIDUALS. 

Multiply each unscaled residual 
by the hat matrix adjustment 
factor. 

fij = 

1

1 ijh
 

hij = the diagonal of the hat matrix 
H 

H = X(XTWX)-1XTW 

X = the design matrix from the 
GLM 

W = the weight matrix from the 
GLM 

 

 

 
HAT MATRIX ADJUSTMENT FACTORS 

 12 24 36 48 60 

2009 2.2611 1.3536 1.3399 1.6454 1.0000 

2010 2.0614 1.2555 1.1985 1.3264   

2011 2.2445 1.2904 1.2379     

2012 2.4376 1.3153       

2013 1.0000         

 

STANDARDIZED PEARSON RESIDUALS 

 12 24 36 48 60 

2009 -13.12 8.71 8.47 3.86 0.00 

2010 6.61 -2.71 -5.46 -3.86   

2011 -1.34 3.30 -3.77     

2012 10.07 -10.07       

2013 0.00         
 

STEP 4b. 
CALCULATE THE SCALE 
PARAMETER. 

N = number of residuals (less 
outliers) 

p = number of parameters in the 
model (typically the  number of 
columns in the residual triangle + 
the number of rows in the data 
triangle + number of additional 
hetero groups – 1) 

 

 
ADDITIONAL STATISTICS CALCULATED 

Pearson chi-squared statistic = sum of squares of unscaled Pearson residuals 

  = 256.55   

      

Degrees of freedom  = # of residuals in the model minus # of parameters ( 

# columns  +  # rows – 1) 

  = 15 – 9 = 6   

      
Scale parameter = Chi-squared statistic ÷ degrees of freedom 

  = 42.76   
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SIMULATION STEPS: 
 

STEP 5.  
RANDOMLY CREATE A NEW 
TRIANGLEOF “SAMPLE” DATA. 

5a. Build a new triangle by 
randomly selecting (with 
replacement) from among the 
non-zero standardized Pearson 
residuals in Step 4a. 

 

5b. Create a triangle of sample 
data based on the randomly 
selected residuals. For each cell: 

mmabsrC SP
ˆ)ˆ(' 

 

 
RANDOMLY SELECTED RESIDUALS 

 12 24 36 48 60 

2009 -1.34 6.61 -3.86 -2.71 8.71 

2010 3.30 -2.71 8.47 -3.77  

2011 -13.12 -2.71 -13.12   

2012 3.30 6.61    

2013 10.07     

 

SAMPLE INCREMENTAL TRIANGLE CALCULATED BASED ON THE RANDOM 
RESIDUALS 

 12 24 36 48 60 

2009 848 365 29 56 38 

2010 656 133 90 25  

2011 331 157 -43   

2012 815 307    

2013 1,022     

  

STEP 6.  
COMPLETE THE NEW RANDOMLY 
GENERATED TRIANGLE. 

Calculate new VWAs and use 
them to complete the bottom 
right of the triangle. 

NOTE: A randomly generated tail 
factor could also be applied here 
to extrapolate future 
development periods – i.e., 
beyond 60 months in this 
example. 

 

 

 

 

 

 

 

 

 

 
SAMPLE CUMULATIVE TRIANGLE 

 12 24 36 48 60 

2009 848 1,213 1,242 1,297 1,335 

2010 656 789 880 904   

2011 331 488 445     

2012 815 1,122       

2013 1,022         

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

1.363 1.031 1.038 1.029 1.000 

 

COMPLETED CUMULATIVE TRIANGLE WITH FUTURE EXPECTED INCURRED 
AMOUNTS 

 12 24 36 48 60 

2009 848 1,213 1,242 1,297 1,335 

2010 656 789 880 904 930 

2011 331 488 445 462 475 

2012 815 1,122 1,157 1,201 1,235 

2013 1,022 1,394 1,436 1,491 1,534 
 

 



Examples of the Basic Calculations  Milliman 

134 Arius Stochastic User Guide 

STEP 7. 
INTRODUCE PROCESS VARIANCE 
AND CALCULATE TOTALS. 

Calculate the incremental 
incurred amounts from the 
cumulative completed triangle. 

To add process variance in the 
simulation, replace every future 
incremental incurred amount 
with a randomly selected point 
from a gamma distribution 
where: 

Mean = the incremental incurred 
loss amount 

Variance = Mean  x  Scale 
Parameter  (see Step 4b) 

 

 

 

 

 
COMPLETED INCREMENTAL TRIANGLE 

 12 24 36 48 60 

2009 848 365 29 56 38 

2010 656 133 90 25 26 

2011 331 157 -43 17 13 

2012 815 307 34 44 35 

2013 1,022 371 43 55 43 

 

RANDOMLY GENERATED PROCESS VARIANCE 

 12 24 36 48 60 TOTAL 

2009 848 365 29 56 38 1,335 

2010 656 133 90 25 72 976 

2011 331 157 -43 44 25 514 

2012 815 307 33 75 27 1,258 

2013 1,022 421 35 88 86 1,653 

      5,736 
 

 

Note that up to this point, the calculations for the incurred model have been 
identical to those in the paid simulation. 

 

STEP 8.  
CONVERT TO PAID LOSS 
DEVELOPMENT PATTERN. 

Starting with the ultimate 
incurred values, convert to 
incremental paid losses using the 
paid loss development pattern 
from Step 7 of the paid 
simulation. This is necessary to 
provide a distribution of unpaid 
loss as opposed to IBNR. 

Note: We are using the values 
from Step 7 in the paid example 
for illustration purposes only. The 
simulation process does not store 
the results from the paid model to 
use with the incurred model, but 
will in effect run a “new” paid 
model (using the paid 
parameters) in order to generate 
independent results for the 
incurred model. 

 

 
INCREMENTAL PAID WITH PROCESS VARIANCE (FROM PAID METHOD, STEP 7) 

 12 24 36 48 60 TOTAL 

2009 405 463 174 104 128 1,274 

2010 189 246 161 30 68 694 

2011 259 425 155 58 80 977 

2012 342 431 194 84 127 1,179 

2013 390 469 235 79 160 1,334 

      5,457 

 

INCREMENTAL INCURRED CONVERTED TO PAID PATTERN 

 12 24 36 48 60 TOTAL 

2009 424 485 183 109 134 1,335 

2010 266 346 227 42 96 976 

2011 136 223 81 31 42 514 

2012 365 460 208 90 136 1,258 

2013 485 581 291 98 199 1,653 

      5,736 
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STEP 9. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in the example, 1,771). 

This provides one estimated 
possible outcome. 

 

 
INCREMENTAL UNPAID WITH PROCESS VARIANCE 

 12 24 36 48 60 TOTAL 

2009       

2010     96 96 

2011    31 42 73 

2012   208 90 136 433 

2013  581 291 98 199 1,169 

      1,771 
 

STEP 10. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 9 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 

MEAN 
UNPAID 

 

STANDARD 
ERROR 

 COEFFICIENT 

OF 
VARIATION 

2009  0  0  0.0% 

2010  72   33   45.7% 

2011  166   56   33.9% 

2012  366   101  27.5% 

2013  777  233  30.0% 

  1,381  272  19.7% 
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A WALKTHROUGH OF THE BASIC BORNHUETTER-FERGUSON CALCULATION  

(PAID DATA) 

Note that, for simplicity, we are using the data from Steps 1 to 5 of the paid 
chain ladder example. In the actual simulations the BF model is simulated 
independently of the chain ladder model. 

 

STEP 6.  
COMPLETE THE NEW 
RANDOMLY-GENERATED 
TRIANGLE. 

Calculate new VWAs and BF 
unpaid ratios. A priori loss ratios 
are simulated from a selected 
distribution with the selected 
mean and CoV. Use these to 
complete the bottom right of the 
triangle. 

We are only illustrating the 
“Deterministic” option of 
allocating to incremental periods 
in Step 6.60  The results of the 
allocation are shown in Step 7. 

 

 
SAMPLE CUMULATIVE TRIANGLE 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626  

2011 259 684 838   

2012 342 773    

2013 390     

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.310 1.247 1.082 1.112 1.000 

CDF 3.464 1.500 1.203 1.112 1.000 

BFUnpd 0.711 0.333 0.169 0.101 0.000 

 

 

ULTIMATE 

PREMIUM 

MEAN 

L/R COV 

SIMULATE
D 

L/R 

A PRIORI 

ULTIMATE 

TOTAL 

UNPAID 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

(4) X (1) 

(6) 

(5) X UNPD 

2009 2,000 55.0% 20.0% 60.2% 1,204 0 

2010 2,000 55.0% 20.0% 50.9% 1,018 102 

2011 2,000 55.0% 20.0% 49.9% 999 168 

2012 2,000 55.0% 20.0% 39.7% 794 265 

2013 2,000 55.0% 20.0% 87.5% 1,750 1,245 

  

 
  

 

60  In addition to the “Deterministic” approach, the model also offers a “Statistical” option based on a paper by Verrall, Richard J. “A 
Bayesian Generalized Linear Model for the Bornhuetter-Ferguson Method of Claims Reserving,” North American Actuarial Journal, Vol. 
8, No. 3, July 2004, pp. 67-89. The Statistical option essentially uses a Bayesian weighting of both the columns and rows in the 
allocation process. 
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STEP 7. 
INTRODUCE PROCESS VARIANCE. 

To add process variance in the 
simulation, replace every future 
incremental paid amount with a 
randomly selected point from a 
gamma distribution where: 

Mean = the incremental paid loss 
amount 

Variance = Mean  x  Scale 
Parameter  (see Step 4b) 

 

 

 

 

 

 

 
COMPLETED INCREMENTAL TRIANGLE  

 12 24 36 48 60 

2009 405 463 174 104 128 

2010 189 246 161 30 102 

2011 259 425 155 68 101 

2012 342 431 131 54 80 

2013 390 662 288 119 176 

 

RANDOMLY GENERATED FUTURE INCREMENTAL PAYMENTS BASED ON ABOVE 

 12 24 36 48 60 

2009      

2010        101 

2011      58 79 

2012    133 58 89 

2013  614 303 105 204 
 

STEP 8. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,743). 

This provides one estimated 
possible outcome. 

 
TOTAL ESTIMATED FUTURE PAYMENTS 

 12 24 36 48 60 TOTAL 

2009       

2010        101 101 

2011      58 79 136 

2012    133 58 89 280 

2013  614 303 105 204 1,225 

      1,743 

  

STEP 9. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 8 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 

MEAN 

UNPAID 

 

STANDARD 

ERROR 

 COEFFICIENT 

OF 

VARIATION 

2009  0  0  0.0% 

2010  96   47   48.7% 

2011  189   65   34.5% 

2012  381   102  26.7% 

2013  782  178  22.8% 

  1,448  232  16.0% 
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A WALKTHROUGH OF THE BASIC CAPE COD CALCULATION (PAID DATA) 

Note that, for simplicity, we are using the data from Steps 1 to 5 of the paid 
chain ladder example. In the actual simulations the Cape Cod model is 
simulated independently of the chain ladder model. 

 

STEP 6.  
COMPLETE THE NEW 
RANDOMLY-GENERATED 
TRIANGLE. 

Calculate new VWAs. Use the 
Cape Cod method to calculate the 
a priori ultimate loss ratios and 
use them to complete the bottom 
right of the triangle. 

For simplicity, we are assuming 
that the trend is 5.0% for each 
period, the weight is 100.0% for 
all periods and the decay rate is 
75.0%.  

We are only illustrating the 
“Deterministic” option of 
allocating to incremental periods 
in Step 6.61  The results of the 
allocation are shown in Step 7. 

 

 

 
SAMPLE CUMULATIVE TRIANGLE 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626  

2011 259 684 838   

2012 342 773    

2013 390     

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.310 1.247 1.082 1.112 1.000 

CDF 3.464 1.500 1.203 1.112 1.000 

Paid 0.289 0.667 0.831 0.899 1.000 

 

 

ULTIMATE 

PREMIUM 

PREMIUM 

INDEX 

ON-LEVEL 

PREMIUM PAID 

TREND 

INDEX 

TRENDED 

PAID 

 

(1) 

 

(2) 

 

(3) 

(1) X (2) 

(4) 

 

(5) 

 

(6) 

(4) X (5) 

2009 2,000 1.420 2,840 1,274 1.252 1,595 

2010 2,000 0.970 1,940 626 1.191 745 

2011 2,000 1.050 2,100 838 1.133 950 

2012 2,000 1.100 2,200 773 1.078 833 

2013 2,000 1.000 2,000 390 1.025 400 

 

 

PERCENT 

PAID 

ON-LEVEL 

RATIO 

WEIGHTED 

RATIO 

DE-TRENDED 

ULTIMATE 

 

ULTIMATE 

 
(7) 

 

(8) 
(6) ÷ (7) ÷ (3) 

(9) 
 

(10) 
(9) X (3) ÷ (5) 

(11) 
(10) X [1–(7)] + (4) 

2009 1.000 56.2% 53.4% 1,211 1,274 

2010 0.899 42.7% 52.6% 857 712 

2011 0.831 54.4% 53.6% 993 1,006 

2012 0.667 56.8% 54.5% 1,113 1,143 

2013 0.289 69.3% 55.4% 1,080 1,159 

  

 
  

 

61 The “Deterministic” and “Statistical” options for allocating the total unpaid by year for the Cape Cod models are the same as for the 
Bornhuetter-Ferguson models. 
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STEP 7. 
INTRODUCE PROCESS VARIANCE. 

To add process variance in the 
simulation, replace every future 
incremental paid amount with a 
randomly selected point from a 
gamma distribution where: 

Mean = the incremental paid loss 
amount 

Variance = Mean  x  Scale 
Parameter  (see Step 4b) 

 

 
COMPLETED INCREMENTAL TRIANGLE  

 12 24 36 48 60 

2009 405 463 174 104 128 

2010 189 246 161 30 86 

2011 259 425 155 67 100 

2012 342 431 183 76 112 

2013 390 408 178 73 109 

 

RANDOMLY GENERATED FUTURE INCREMENTAL PAYMENTS BASED ON ABOVE 

 12 24 36 48 60 

2009      

2010        85 

2011      57 78 

2012    187 81 123 

2013  370 189 62 130 

  

STEP 8. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,362). 

This provides one estimated 
possible outcome. 

 

 

 
TOTAL ESTIMATED FUTURE PAYMENTS 

 12 24 36 48 60 TOTAL 

2009       

2010        85 85 

2011      57 78 135 

2012    187 81 123 390 

2013  370 189 62 130 752 

      1,362 
 

STEP 9. 
REPEAT AND SUMMARIZE. 

Repeat Steps 6 through 8 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 

MEAN 
UNPAID 

 

STANDARD 
ERROR 

 COEFFICIENT 

OF 
VARIATION 

2009  0  0  0.0% 

2010  76   35   46.4% 

2011  169   51   30.1% 

2012  375   71  18.9% 

2013  741  92  12.5% 

  1,362  164  12.1% 
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USING THE ODP PROCESS ALGORITHM 

A Walkthrough of the Chain Ladder Calculation (Paid Data) 

Note that, for simplicity, we are using the data from Steps 1 to 7 of the paid 
chain ladder example, since the ODP Process algorithm builds on the basic 
model for the time horizon simulations. 

 

STEP 8.  
USE ORIGINAL DATA TRIANGLE 
AND N FUTURE DIAGONALS TO 
CALCULATE REMAINING UNPAID. 

Calculate new VWAs and use 
them to complete the bottom 
right of the trapezoid. In this 
example N = 1. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 

 

 
CUMULATIVE ONE-YEAR SAMPLE TRAPEZOID 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 818 

2011 279 638 767 825   

2012 311 717 911     

2013 308 777       

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.317 1.267 1.094 1.093 1.000 

 

COMPLETED CUMULATIVE TRAPEZOID WITH FUTURE EXPECTED PAID AMOUNTS 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 818 

2011 279 638 767 825  902 

2012 311 717 911 997 1,090 

2013 308 777 984  1,077  1,177 
 

STEP 9. 
CALCULATE TOTAL OF POSSIBLE 
OUTCOME AND EXPECTED 
UNPAID AMOUNTS. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,445). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 
TOTAL ESTIMATED ONE-YEAR FUTURE PAYMENTS AND REMAINING POINT 
ESTIMATE 

 12 24 36 48 60 TOTAL 

2009       

2010       68 68 

2011     58 77 135 

2012    194 85 93 373 

2013  469 207 92 100 869 

      1,445 
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STEP 10. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 9 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  71   30   42.3% 

2011  158   35   22.4% 

2012  378   61  16.3% 

2013  761  140  18.5% 

  1,369  184  13.4% 
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A Walkthrough of the Chain Ladder Calculation (Incurred Data) 

Note that, for simplicity, we are using the data from Steps 1 to 8 of the 
incurred chain ladder example, since the ODP Process algorithm builds on 
the basic model for the time horizon simulations. 

STEP 9. 
USE ORIGINAL INCURRED DATA 
TRIANGLE AND N FUTURE 
DIAGONALS TO CALCULATE 
REMAINING IBNR. 

Calculate new VWAs and use 
them to complete the bottom 
right of the trapezoid. In this 
example N=1. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 

 
CUMULATIVE ONE-YEAR SAMPLE INCURRED TRAPEZOID 

 12 24 36 48 60 

2009 715 1,077 1,184 1,285 1,295 

2010 654 794 804 835 907 

2011 655 886 910 954   

2012 837 937 970     

2013 747 1,168       

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

1.348 1.047 1.061 1.039 1.000 

 

COMPLETED CUMULATIVE TRAPEZOID WITH FUTURE EXPECTED INCURRED 
AMOUNTS 

 12 24 36 48 60 

2009 715 1,077 1,184 1,285 1,295 

2010 654 794 804 835 907 

2011 655 886 910 954  991 

2012 837 937 970 1,029 1,069 

2013 747 1,168 1,223  1,297  1,348 
 

STEP 10.  
USE ORIGINAL PAID DATA 
TRIANGLE AND N FUTURE 
DIAGONALS TO CALCULATE 
REMAINING UNPAID. 

Calculate new VWAs and use 
them to complete the bottom 
right of the trapezoid. In this 
example N=1. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 
CUMULATIVE ONE-YEAR SAMPLE PAID TRAPEZOID 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 818 

2011 279 638 767 825   

2012 311 717 911     

2013 308 777       

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.317 1.267 1.094 1.093 1.000 

 

COMPLETED CUMULATIVE TRAPEZOID WITH FUTURE EXPECTED PAID AMOUNTS 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 818 

2011 279 638 767 825  902 

2012 311 717 911 997 1,090 

2013 308 777 984  1,077  1,177 
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STEP 11.  
USE ORIGINAL PAID DATA 
TRIANGLE AND N FUTURE 
INCURRED PAID DIAGONALS. 
SUBTRACT THE CUMULATIVE 
PAID FROM INCURRED 
ULTIMATE VALUES. ALLOCATE 
REMAINING UNPAID USING PAID 
PATTERN. 

Use the incurred converted to a 
random paid pattern from step 8 
of the basic model for the 
trapezoid. 

Calculate the remaining unpaid by 
subtracting the paid to date from 
the ultimate incurred by year 
from Step 9. Calculate the 
allocation percentages from the 
future paid in step 10. 

Allocate the remaining unpaid to 
incremental period using the 
allocation percentages. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,711). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 

 
INCREMENTAL ONE-YEAR SAMPLE PAID TRAPEZOID 

 12 24 36 48 60 

2009 352 431 262 183 112 

2010 255 317 138 40 96 

2011 279 359 129 31   

2012 311 406 208     

2013 308 581       

 

 

REMAINING 

UNPAID  36 48 60 

2009 0     

2010 0     

2011 193    1.00 

2012 144   0.48 0.52 

2013 459  0.52 0.23 0.25 

 

COMPLETED INCREMENTAL TRAPEZOID WITH FUTURE INCURRED CONVERTED TO 
PAID 

 12 24 36 48 60 TOTAL 

2009       

2010     96 96 

2011    31  193 224 

2012   208  69  75 352 

2013  581 238 106 115 1,040 

      1,711 
 

STEP 12. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 11 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 

MEAN 

UNPAID 

 

STANDARD 

ERROR 

 COEFFICIENT 

OF 

VARIATION 

2009  0  0  0.0% 

2010  72   33   45.7% 

2011  213   70   33.0% 

2012  344   67  19.5% 

2013  786  151  19.2% 

  1,415  210  14.8% 
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A Walkthrough of the Bornhuetter-Ferguson Calculation (Paid Data) 

Note that, for simplicity, we are using the data from Steps 1 to 7 of the paid 
Bornhuetter-Ferguson example, since the ODP Process algorithm builds on 
the basic model for the time horizon simulations. 

 

STEP 8.  
USE ORIGINAL DATA TRIANGLE 
AND N FUTURE DIAGONALS TO 
CALCULATE REMAINING UNPAID. 

Calculate new VWAs and BF 
unpaid ratios and use them to 
complete the bottom right of the 
trapezoid. In this example N=1. 

Simulated a priori loss ratios from 
the basic model are used again 
without resampling. Use these to 
complete the bottom right of the 
triangle. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 
CUMULATIVE ONE-YEAR SAMPLE TRAPEZOID 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 851 

2011 279 638 767 825   

2012 311 717 850     

2013 308 922       

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.413 1.244 1.093 1.110 1.000 

CDF 3.645 1.511 1.214 1.110 1.000 

BFUnpd 0.726 0.338 0.176 0.099 0.000 

 

 

ULTIMATE 

PREMIUM 

MEAN 

L/R COV 

SIMULATE

D 

L/R 

A PRIORI 

ULTIMATE 

TOTAL 

UNPAID 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

(4) X (1) 
(6) 

(5) X UNPD 

2009 2,000 55.0% 20.0% 60.2% 1,204 0 

2010 2,000 55.0% 20.0% 50.9% 1,018 0 

2011 2,000 55.0% 20.0% 49.9% 999 99 

2012 2,000 55.0% 20.0% 39.7% 794 140 

2013 2,000 55.0% 20.0% 87.5% 1,750 592 
 

STEP 9. 
 CALCULATE TOTAL OF POSSIBLE 
OUTCOME AND EXPECTED 
UNPAID AMOUNTS. 

Only the “Deterministic” option 
of allocating to incremental 
periods is available for the ODP 
Process algorithm. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,737). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 

 
TOTAL ESTIMATED ONE-YEAR FUTURE PAYMENTS AND REMAINING POINT 
ESTIMATE 

 12 24 36 48 60 TOTAL 

2009       

2010       101 101 

2011     58 99 157 

2012    133 61 79 273 

2013  614 283 135 174 1,205 

      1,737 
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STEP 10. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 9 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  96   47   48.7% 

2011  200   58   28.9% 

2012  394   94  23.9% 

2013  794  172  21.6% 

  1,484  232  15.6% 
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A Walkthrough of the Cape Cod Calculation (Paid Data) 

Note that, for simplicity, we are using the data from Steps 1 to 7 of the paid 
Cape Cod example, since the ODP Process algorithm builds on the basic 
model for the time horizon simulations. 

 

STEP 8.  
USE ORIGINAL DATA TRIANGLE 
AND N FUTURE DIAGONALS TO 
CALCULATE REMAINING UNPAID. 

Calculate new VWAs and CC paid 
ratios and use them to complete 
the bottom right of the trapezoid. 
In this example N=1. 

Simulated a priori loss ratios from 
the basic model are used again 
without resampling. Use these to 
complete the bottom right of the 
triangle. 

For simplicity, we are assuming 
that the trend is 5.0% for each 
period, the weight is 100.0% for 
all periods and the decay rate is 
75.0%. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 
CUMULATIVE ONE-YEAR SAMPLE TRAPEZOID 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 835 

2011 279 638 767 824   

2012 311 717 904     

2013 308 678       

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.251 1.264 1.093 1.102 1.000 

CDF 3.428 1.523 1.205 1.102 1.000 

Paid 0.292 0.657 0.830 0.908 1.000 

 

 

ULTIMATE 

PREMIUM 

PREMIUM 

INDEX 

ON-LEVEL 

PREMIUM PAID 

TREND 

INDEX 

TRENDED 

PAID 

 
(1) 

 
(2) 

 
(3) 

(1) X (2) 
(4) 

 
(5) 

 
(6) 

(4) X (5) 

2009 2,000 1.420 2,840 1,295 1.252 1,621 

2010 2,000 0.970 1,940 835 1.191 994 

2011 2,000 1.050 2,100 824 1.133 934 

2012 2,000 1.100 2,200 904 1.078 974 

2013 2,000 1.000 2,000 678 1.025 696 

 

 

PERCENT 

PAID 

ON-LEVEL 

RATIO 

WEIGHTED 

RATIO 

DE-TRENDED 

ULTIMATE 

 

ULTIMATE 

 

(7) 

 

(8) 

(6) ÷ (7) ÷ (3) 

(9) 

 

(10) 

(9) X (3) ÷ (5) 

(11) 

(10) X [1–(7)] + (4) 

2009 1.000 57.1% 53.8% 1,220 1,295 

2010 1.000 51.2% 53.0% 863 835 

2011 0.908 49.0% 52.5% 974 914 

2012 0.830 53.3% 52.7% 1,075 1,086 

2013 0.657 53.0% 52.7% 1,028 1,031 
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STEP 9. 
CALCULATE TOTAL OF POSSIBLE 
OUTCOME AND EXPECTED 
UNPAID AMOUNTS. 

Only the “Deterministic” option 
of allocating to incremental 
periods is available for the ODP 
Process algorithm. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,325). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 

 
TOTAL ESTIMATED ONE-YEAR FUTURE PAYMENTS AND REMAINING POINT 
ESTIMATE 

 12 24 36 48 60 TOTAL 

2009       

2010       85 85 

2011     57 90 147 

2012    187 83 99 369 

2013  370 178 80 95 723 

      1,325 

  

STEP 10. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 9 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 

MEAN 
UNPAID 

 

STANDARD 
ERROR 

 COEFFICIENT 

OF 
VARIATION 

2009  0  0  0.0% 

2010  76   35   46.4% 

2011  171   39   22.8% 

2012  379   55  14.5% 

2013  743  73  9.8% 

  1,369  145  10.6% 
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USING THE ODP RESIDUAL ALGORITHM 

A Walkthrough of the Chain Ladder Calculation (Paid Data) 

Note that, for simplicity, we are using the data from Steps 1 to 4 of the paid 
chain ladder example, since the ODP Residual algorithm builds on the basic 
model for the time horizon simulations. 

 

STEP 5.  
RANDOMLY CREATE A NEW 
TRAPEZOID OF “SAMPLE” DATA. 

5a. Build a new trapezoid by 
randomly selecting (with 
replacement) from among the 
non-zero standardized Pearson 
residuals in Step 4a. 

5b. Add the future expected 
values (fitted) to the fitted 
triangle from Step 2 using the 
appropriate VWAs from Step 1. 

5c. Create a trapezoid of sample 
data based on the randomly 
selected residuals. For each cell: 

mmabsrC SP
ˆ)ˆ(' 

 

 
RANDOMLY SELECTED RESIDUALS 

 12 24 36 48 60 

2009 1.54 -0.50 -3.39 -0.50 1.54 

2010 -3.17 -3.17 1.54 -4.69 0.98 

2011 -0.53 4.69 -0.50 -1.76  

2012 1.40 1.54 1.40   

2013 4.69 4.69    

 

TRAPEZOID FITTED BACKWARDS FROM LATEST DIAGONAL & FUTURE EXPECTATION 

 12 24 36 48 60 

2009 375 849 1,074 1,183 1,295 

2010 238 538 681 750 821 

2011 268 606 767 845   

2012 317 717 907     

2013 308 697       

 

SAMPLE INCREMENTAL TRAPEZOID CALCULATED BASED ON THE RANDOM 
RESIDUALS 

 12 24 36 48 60 

2009 405 463 174 104 128 

2010 189 246 161 30 79 

2011 259 425 155 62  

2012 342 431 210   

2013 390 482    
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STEP 6.  
USE SAMPLE DATA TRAPEZOID 
(INCLUDING N FUTURE 
DIAGONALS) TO CALCULATE 
REMAINING UNPAID. 

Calculate new VWAs and use 
them to complete the bottom 
right of the trapezoid. In this 
example N=1. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 

 
SAMPLE CUMULATIVE TRAPEZOID 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626 705 

2011 259 684 838 901  

2012 342 773 982   

2013 390 872    

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.291 1.254 1.079 1.117 1.000 

 

COMPLETED CUMULATIVE TRAPEZOID WITH FUTURE EXPECTED PAYMENTS 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626 705 

2011 259 684 838 901 1,006 

2012 342 773 982 1,060 1,184 

2013 390 872 1,093 1,180 1,318 
 

STEP 7. 
CALCULATE TOTAL OF POSSIBLE 
OUTCOME AND EXPECTED 
UNPAID AMOUNTS. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,587). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 
TOTAL ESTIMATED ONE-YEAR FUTURE PAYMENTS AND REMAINING POINT 
ESTIMATE 

 12 24 36 48 60 TOTAL 

2009       

2010       79 79 

2011     62 105 168 

2012    210 78 124 412 

2013  482 221 87 138 928 

      1,587 

  

STEP 8. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 7 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  72   22   31.2% 

2011  159   31   19.7% 

2012  379   54  14.2% 

2013  759  91  12.0% 

  1,368  136  9.9% 
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A Walkthrough of the Chain Ladder Calculation (Incurred Data) 

Note that, for simplicity, we are using the data from Steps 1 to 4 of the 
incurred chain ladder example, since the ODP Residual algorithm builds on 
the basic model for the time horizon simulations. 

 

STEP 5.  
RANDOMLY CREATE A NEW 
TRAPEZOID OF “SAMPLE” DATA. 

5a. Build a new trapezoid by 
randomly selecting (with 
replacement) from among the 
non-zero standardized Pearson 
residuals in Step 4a. 

5b. Add the future expected 
values (fitted) to the fitted 
triangle from Step 2 using the 
appropriate VWAs from Step 1. 

5c. Create a trapezoid of sample 
data based on the randomly 
selected residuals. For each cell: 

 

mmabsrC SP
ˆ)ˆ(' 

 

 
RANDOMLY SELECTED RESIDUALS 

 12 24 36 48 60 

2009 -1.34 6.61 -3.86 -2.71 8.71 

2010 3.30 -2.71 8.47 -3.77 -3.77 

2011 -13.12 -2.71 -13.12 8.71  

2012 3.30 6.61 -2.71   

2013 10.07 3.30    

 

TRAPEZOID FITTED BACKWARDS FROM LATEST DIAGONAL & FUTURE EXPECTATION 

 12 24 36 48 60 

2009 888 1,146 1,205 1,285 1,295 

2010 577 745 783 835 841 

2011 671 866 910 970   

2012 726 937  985     

2013 747 964        

 

SAMPLE INCREMENTAL TRAPEZOID CALCULATED BASED ON THE RANDOM 
RESIDUALS 

 12 24 36 48 60 

2009 848 365 29 56 38 

2010 656 133 90 25 -3 

2011 331 157 -43 128  

2012 815 307 29   

2013 1,022 266    
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STEP 6.  
USE SAMPLE DATA TRAPEZOID 
(INCLUDING N FUTURE 
DIAGONALS) TO CALCULATE 
REMAINING UNPAID. 

Calculate new VWAs and use 
them to complete the bottom 
right of the trapezoid. In this 
example N=1. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 

 

 
SAMPLE CUMULATIVE TRAPEZOID 

 12 24 36 48 60 

2009 848 1,213 1,242 1,297 1,335 

2010 656 789 880 904 901 

2011 331 488 445 573   

2012 815 1,122 1,151     

2013 1,022 1,288       

 

VWAs 
12-24 24-36 36-48 48-60 60+ 

1.335 1.029 1.081 1.016 1.000 

 

COMPLETED CUMULATIVE TRAPEZOID WITH FUTURE EXPECTED INCURRED 
AMOUNTS 

 12 24 36 48 60 

2009 848 1,213 1,242 1,297 1,335 

2010 656 789 880 904 901 

2011 331 488 445 573 582 

2012 815 1,122 1,151 1,245 1,264 

2013 1,022 1,288 1,326 1,434 1,456 
 

 

Note that up to this point, the calculations for the incurred model have been 
identical to those in the paid simulation. 

 

STEP 7.  
USE BASIC MODEL TO CONVERT 
TO PAID LOSS DEVELOPMENT 
PATTERN. 

Use the results from Step 8 of the 
basic model. This is necessary to 
insure that the triangle results are 
identical to the basic model. 

 

 

 

 

 

 

 

 

 
INCREMENTAL PAID WITH PROCESS VARIANCE (FROM BASIC MODEL) 

 12 24 36 48 60 TOTAL 

2009 405 463 174 104 128 1,274 

2010 189 246 161 30 68 694 

2011 259 425 155 58 80 977 

2012 342 431 194 84 127 1,179 

2013 390 469 235 79 160 1,334 

      5,457 

 

INCREMENTAL INCURRED CONVERTED TO PAID PATTERN (FROM BASIC MODEL) 

 12 24 36 48 60 TOTAL 

2009 424 485 183 109 134 1,335 

2010 266 346 227 42 96 976 

2011 136 223 81 31 42 514 

2012 365 460 208 90 136 1,258 

2013 485 581 291 98 199 1,653 

      5,736 
 



Examples of the Basic Calculations  Milliman 

152 Arius Stochastic User Guide 

STEP 8.  
RUN THE MODEL IN PARALLEL 
FOR PAID DATA. 

Note: We are using the values 
from Step 6 in the paid example 
for illustration purposes only. The 
simulation process does not store 
the results from the paid model to 
use with the incurred model, but 
will in effect run a “new” paid 
model (using the paid 
parameters) in order to generate 
independent results for the 
incurred model. 

 

 
COMPLETED CUMULATIVE PAID TRAPEZOID WITH FUTURE EXPECTED PAYMENTS 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626 705 

2011 259 684 838 901 1,006 

2012 342 773 982 1,060 1,184 

2013 390 872 1,093 1,180 1,318 

 

 

STEP 9.  
USE BASIC MODEL SAMPLE 
TRIANGLE CONVERTED TO A 
PAID PATTERN. SUBTRACT THE 
CUMULATIVE PAID FROM 
INCURRED ULTIMATE VALUES. 
ALLOCATE REMAINING UNPAID 
USING PAID PATTERN. 

Use the incurred converted to a 
random paid pattern from the 
basic model for the triangle. 

Calculate the remaining unpaid by 
subtracting the paid to date from 
the ultimate incurred by year 
from Step 6. Calculate the 
allocation percentages from the 
future paid in step 8. 

Allocate the remaining unpaid to 
incremental period using the 
allocation percentages. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,575). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 

 
INCREMENTAL SAMPLE PAID TRIANGLE 

 12 24 36 48 60 

2009 424 485 183 109 134 

2010 266 346 227 42  

2011 136 223 81   

2012 365 460    

2013 485     

 

 

REMAINING 

UNPAID  24 36 48 60 

2009 0      

2010 21     1.00 

2011 141    0.37 0.63 

2012 440   0.51 0.19 0.30 

2013 973  0.52 0.24 0.09 0.15 

 

COMPLETED INCREMENTAL TRIANGLE WITH FUTURE INCURRED CONVERTED TO 
PAID 

 12 24 36 48 60 TOTAL 

2009       

2010     21 21 

2011    52  89 141 

2012   224  83  133 440 

2013  505 232 91 145 973 

      1,575 
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STEP 10. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 9 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  71   46   64.2% 

2011  164   93   56.8% 

2012  365   117  32.0% 

2013  775  194  25.0% 

  1,376  270  19.6% 
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A Walkthrough of the Bornhuetter-Ferguson Calculation (Paid Data) 

Note that, for simplicity, we are using the data from Steps 1 to 4 of the paid 
Bornhuetter-Ferguson example, since the ODP Residual algorithm builds on 
the basic model for the time horizon simulations. 

STEP 5.  
RANDOMLY CREATE A NEW 
TRAPEZOID OF “SAMPLE” DATA. 

5a. Build a new trapezoid by 
randomly selecting (with 
replacement) from among the 
non-zero standardized Pearson 
residuals in Step 4a. 

5b. Add the future expected 
values (fitted) to the fitted 
triangle from Step 2 using the 
appropriate VWAs from Step 1 
and the mean BF assumptions. 

5c. Create a trapezoid of sample 
data based on the randomly 
selected residuals. For each cell: 
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RANDOMLY SELECTED RESIDUALS 

 12 24 36 48 60 

2009 1.54 -0.50 -3.39 -0.50 1.54 

2010 -3.17 -3.17 1.54 -4.69 0.98 

2011 -0.53 4.69 -0.50 -1.76  

2012 1.40 1.54 1.40   

2013 4.69 4.69    

 

TRAPEZOID FITTED BACKWARDS FROM LATEST DIAGONAL & FUTURE EXPECTATION 

 12 24 36 48 60 

2009 375 849 1,074 1,183 1,295 

2010 238 538 681 750 845 

2011 268 606 767 860   

2012 317 717 908     

2013 308 711       

 

SAMPLE INCREMENTAL TRAPEZOID CALCULATED BASED ON THE RANDOM 
RESIDUALS 

 12 24 36 48 60 

2009 405 463 174 104 128 

2010 189 246 161 30 105 

2011 259 425 155 76  

2012 342 431 211   

2013 390 497    

  

STEP 6.  
USE ORIGINAL DATA TRIANGLE 
AND N FUTURE DIAGONALS TO 
CALCULATE REMAINING UNPAID. 

Calculate new VWAs and BF 
unpaid ratios and use them to 
complete the bottom right of the 
trapezoid. In this example N=1. 

Simulated a priori loss ratios from 
the basic model are used again 
without resampling. Use these to 
complete the bottom right of the 
triangle. 

 

 

 

 
CUMULATIVE ONE-YEAR SAMPLE TRAPEZOID 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626 730 

2011 259 684 838 914   

2012 342 773 983     

2013 390 877       

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.301 1.254 1.085 1.131 1.000 

CDF 3.541 1.539 1.227 1.131 1.000 

BFUnpd 0.718 0.350 0.185 0.116 0.000 
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NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 

ULTIMATE 

PREMIUM 

MEAN 

L/R COV 

SIMULATE
D 

L/R 

A PRIORI 

ULTIMATE 

TOTAL 

UNPAID 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

(4) X (1) 

(6) 

(5) X UNPD 

2009 2,000 55.0% 20.0% 60.2% 1,204 0 

2010 2,000 55.0% 20.0% 50.9% 1,018 0 

2011 2,000 55.0% 20.0% 49.9% 999 116 

2012 2,000 55.0% 20.0% 39.7% 794 147 

2013 2,000 55.0% 20.0% 87.5% 1,750 613 
 

STEP 7. 
CALCULATE TOTAL OF POSSIBLE 
OUTCOME AND EXPECTED 
UNPAID AMOUNTS. 

Only the “Deterministic” option 
of allocating to incremental 
periods is available for the ODP 
Process algorithm. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,764). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 
TOTAL ESTIMATED ONE-YEAR FUTURE PAYMENTS AND REMAINING POINT 
ESTIMATE 

 12 24 36 48 60 TOTAL 

2009       

2010       105 105 

2011     76 116 192 

2012    211 55 92 358 

2013  497 289 121 203 1,110 

      1,764 
  

STEP 8. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 7 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 
 MEAN 

UNPAID 
 STANDARD 

ERROR 
 COEFFICIENT 

OF VARIATION 

2009  0  0  0.0% 

2010  95   25   26.7% 

2011  198   38   19.4% 

2012  394   59  15.0% 

2013  795  99  12.4% 

  1,483  143  9.6% 
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A Walkthrough of the Cape Cod Calculation (Paid Data) 

Note that, for simplicity, we are using the data from Steps 1 to 4 of the paid 
Cape Cod example, since the ODP Residual algorithm builds on the basic 
model for the time horizon simulations. 

STEP 5.  
RANDOMLY CREATE A NEW 
TRAPEZOID OF “SAMPLE” DATA. 

5a. Build a new trapezoid by 
randomly selecting (with 
replacement) from among the 
non-zero standardized Pearson 
residuals in Step 4a. 

5b. Add the future expected 
values (fitted) to the fitted 
triangle from Step 2 using the 
appropriate VWAs from Step 1 
and the mean CC assumptions. 

5c. Create a trapezoid of sample 
data based on the randomly 
selected residuals. For each cell: 
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RANDOMLY SELECTED RESIDUALS 

 12 24 36 48 60 

2009 1.54 -0.50 -3.39 -0.50 1.54 

2010 -3.17 -3.17 1.54 -4.69 0.98 

2011 -0.53 4.69 -0.50 -1.76  

2012 1.40 1.54 1.40   

2013 4.69 4.69    

 

TRAPEZOID FITTED BACKWARDS FROM LATEST DIAGONAL & FUTURE EXPECTATION 

 12 24 36 48 60 

2009 375 849 1,074 1,183 1,295 

2010 238 538 681 750 826 

2011 268 606 767 848   

2012 317 717 894     

2013 308 650       

 

SAMPLE INCREMENTAL TRAPEZOID CALCULATED BASED ON THE RANDOM 
RESIDUALS 

 12 24 36 48 60 

2009 405 463 174 104 128 

2010 189 246 161 30 84 

2011 259 425 155 65  

2012 342 431 196   

2013 390 429    
 

STEP 6.  
USE ORIGINAL DATA TRIANGLE 
AND N FUTURE DIAGONALS TO 
CALCULATE REMAINING UNPAID. 

Calculate new VWAs and CC paid 
ratios and use them to complete 
the bottom right of the trapezoid. 
In this example N=1. 

Simulated a priori loss ratios from 
the basic model are used again 
without resampling. Use these to 
complete the bottom right of the 
triangle. 

 
CUMULATIVE ONE-YEAR SAMPLE TRAPEZOID 

 12 24 36 48 60 

2009 405 868 1,042 1,146 1,274 

2010 189 434 596 626 710 

2011 259 684 838 903   

2012 342 773 969     

2013 390 819       

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.258 1.249 1.080 1.120 1.000 

CDF 3.411 1.511 1.210 1.120 1.000 

Paid 0.293 0.662 0.827 0.893 1.000 
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For simplicity, we are assuming 
that the trend is 5.0% for each 
period, the weight is 100.0% for 
all periods and the decay rate is 
75.0%. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

 

 

 

 

 

 

ULTIMATE 

PREMIUM 

PREMIUM 

INDEX 

ON-LEVEL 

PREMIUM PAID 

TREND 

INDEX 

TRENDED 

PAID 

 

(1) 

 

(2) 

 

(3) 

(1) X (2) 

(4) 

 

(5) 

 

(6) 

(4) X (5) 

2009 2,000 1.420 2,840 1,274 1.252 1,595 

2010 2,000 0.970 1,940 710 1.191 845 

2011 2,000 1.050 2,100 903 1.133 1,023 

2012 2,000 1.100 2,200 969 1.078 1,044 

2013 2,000 1.000 2,000 819 1.025 840 

 

 

PERCENT 

PAID 

ON-LEVEL 

RATIO 

WEIGHTED 

RATIO 

DE-TRENDED 

ULTIMATE 

 

ULTIMATE 

 
(7) 

 

(8) 
(6) ÷ (7) ÷ (3) 

(9) 
 

(10) 
(9) X (3) ÷ (5) 

(11) 
(10) X [1–(7)] + (4) 

2009 1.000 56.2% 53.7% 1,219 1,274 

2010 1.000 43.6% 53.1% 866 710 

2011 0.893 54.6% 54.1% 1,004 1,011 

2012 0.827 57.4% 55.2% 1,126 1,164 

2013 0.662 63.4% 56.0% 1,093 1,189 
 

STEP 7. 
CALCULATE TOTAL OF POSSIBLE 
OUTCOME AND EXPECTED 
UNPAID AMOUNTS. 

Only the “Deterministic” option 
of allocating to incremental 
periods is available for the ODP 
Process algorithm. 

Sum the future incremental 
values to estimate the total 
unpaid loss by period and in total 
(in this example, 1,446). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 

 
TOTAL ESTIMATED ONE-YEAR FUTURE PAYMENTS AND REMAINING POINT 
ESTIMATE 

 12 24 36 48 60 TOTAL 

2009       

2010       84 84 

2011     65 108 172 

2012    196 75 121 391 

2013  429 180 72 117 798 

      1,446 
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STEP 8. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 7 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  75   23   30.4% 

2011  170   30   17.7% 

2012  379   46  12.2% 

2013  742  63  8.5% 

  1,367  118  8.6% 
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USING THE MACK PROCESS ALGORITHM 

A Walkthrough of the Chain Ladder Calculation (Paid Data) 

Note that since the Mack Process algorithm is different than the basic model 
so all steps are different. 

 

STEP 1. 
BUILD A BASIC DEVELOPMENT 
MODEL. 

Use the standard chain-ladder 
method and the all-period 
volume-weighted average (VWA) 
to calculate age-to-age factors. 

 
CUMULATIVE PAID LOSS DATA 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750   

2011 279 638 767     

2012 311 717       

2013 308         

 

AGE-TO-AGE FACTORS 

 12-24 24-36 36-48 48-60 

2009 2.224 1.335 1.132 1.095 

2010 2.243 1.241 1.056  

2011 2.287 1.202    

2012 2.306      

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.264 1.265 1.101 1.095 1.000 

  

STEP 2.  
CALCULATE UNSCALED 
RESIDUALS. 

Using the age-to-age factors, 
subtract the average from the 
actual amount for each cell. 
Divide each result by the square 
root of the cumulative paid 
amount. This results in “unscaled 
residuals.” 

𝑟𝑢 = (𝐶 − 𝐴) 𝑥 √𝑚 

C = actual age-to-age factor 

A = average age-to-age factor 

m = cumulative amount from 
triangle of data 

 

 
UNSCALED RESIDUALS 

 12-24 24-36 36-48 48-60 

2009 -0.742 1.936 0.990 0.000 

2010 -0.333 -0.578 -1.201  

2011 0.380 -1.597    

2012 0.731      

  

  



Examples of the Basic Calculations  Milliman 

160 Arius Stochastic User Guide 

STEP 3. 
STANDARDIZE THE RESIDUALS. 

Divide each unscaled residual by 
the standard deviation of the 
unscaled residuals in that 
column.62 

The last standard deviation is the 
minimum of the two prior or the 
prior squared divided by the 
second prior, whichever is less. 

U
S

r
r

sd


 

sd = standard deviation of 
unscaled residuals 

 
STANDARD DEVIATION OF RESIDUALS 

 12-24 24-36 36-48 48-60 

2009 0.669 1.821 1.557 1.331 

 

STANDARDIZED RESIDUALS 

 12-24 24-36 36-48 48-60 

2009 -1.110 1.063 0.636 0.00 

2010 -0.498 -0.317 -0.772  

2011 0.568 -0.877    

2012 1.094      
 

 
SIMULATION STEPS 
 

STEP 4.  
RANDOMLY CREATE A NEW 
TRIANGLE OF “SAMPLE” AGE-TO-
AGE FACTORS. 

4a. Build a new triangle by 
randomly selecting (with 
replacement) from among the 
non-zero standardized residuals in 
Step 3.63 

4b. Create a triangle of sample 
data based on the randomly 
selected residuals. For each cell: 

'
' Sr sd

C A
m


 

 

4c. Calculate the all-period 
volume-weighted average (VWA) 
of the sample age-to-age factors. 

 

 

 
RANDOMLY SELECTED RESIDUALS 

 12-24 24-36 36-48 48-60 

2009 -0.772 -0.877 -0.877 -0.317 

2010 0.568 1.063 0.636  

2011 0.568 0.636   

2012 -0.877    

 

SAMPLE TRIANGLE OF FACTORS CALCULATED BASED ON THE RANDOM RESIDUALS 

 12-24 24-36 36-48 48-60 

2009 2.237 1.208 1.059 1.082 

2010 2.288 1.346 1.139  

2011 2.287 1.311   

2012 2.231    

 

VWAS 

12-24 24-36 36-48 48-60 60+ 

2.258 1.281 1.091 1.082 1.000 
 

  

 

62 The standardized residuals can also be adjusted so that the average residual is zero, but the zero-adjusted residuals are not shown in 
the example. Also, the standard deviations of the unscaled residuals are calculated under the assumption that the average unscaled 
residual is zero. 

63 As noted in Section 3, Step 4, this is the only option for randomly simulating a new triangle. Other options used by the ODP Bootstrap 
model are not used. 
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STEP 5.  
COMPLETE THE NEXT 
DEVELOPMENT PERIOD FOR THE 
TRIANGLE. 

Use the new VWAs to complete 
the next diagonal to the right of 
the data triangle. 

NOTE: A randomly generated tail 
factor could also be applied here 
to extrapolate future development 
periods – i.e., beyond 60 months in 
this example. 

 

 
CUMULATIVE TRIANGLE WITH FUTURE EXPECTED PAYMENTS 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 812 

2011 279 638 767 837   

2012 311 717 918     

2013 308 695       
 

STEP 6. 
INTRODUCE PROCESS VARIANCE. 

To add process variance in the 
simulation, replace every future 
cumulative paid amount with a 
randomly selected point from a 
gamma distribution64 where: 

Mean = the cumulative paid loss 
amount 

Variance = Prior Mean  x  Variance 
of the Residuals  (see Step 3) 

 

 
CUMULATIVE TRIANGLE WITH FUTURE POSSIBLE OUTCOMES 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 765 

2011 279 638 767 911   

2012 311 717 863     

2013 308 698       
 

STEP 7.  
USE DATA TRAPEZOID 
(INCLUDING N FUTURE 
DIAGONALS) TO CALCULATE 
REMAINING UNPAID. 

Calculate new VWAs and use 
them to complete the bottom 
right of the trapezoid. In this 
example N = 1. 

NOTE: If a tail factor was used in 
the basic model, then the 
projected value would be used in 
the future diagonal and to 
calculate the VWAs. If the tail 
factor was extrapolated, then the 
remaining random factors would 
be applied – i.e., beyond 72 
months in this example. 

 

 

VWAs 

12-24 24-36 36-48 48-60 60+ 

2.265 1.249 1.128 1.066 1.000 

 

COMPLETED CUMULATIVE TRAPEZOID WITH FUTURE EXPECTED PAYMENTS 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750 765 

2011 279 638 767 911 971 

2012 311 717 863 973 1,037 

2013 308 698 873 984 1,048 
 

 

64  As a technical note, this is based on the “distribution free” Mack method so any distribution can be used. The gamma distribution is 
used here only for consistency with the ODP Bootstrap model. 
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STEP 8. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Sum the future incremental values 
to estimate the total unpaid loss 
by period and in total (in this 
example, 1,279). 

This provides one estimated 
possible outcome, with its 
conditional expected value. 

 
TOTAL ESTIMATED ONE-YEAR FUTURE PAYMENTS AND REMAINING POINT 
ESTIMATE 

 12 24 36 48 60 TOTAL 

2009       

2010       15 15 

2011     144 60 204 

2012    146 110 64 320 

2013  390 174 111 65 740 

      1,279 

  

STEP 9. 
REPEAT AND SUMMARIZE. 

Repeat Steps 5 through 8 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  71   44   61.3% 

2011  157   57   36.3% 

2012  376   73  19.3% 

2013  755  39  5.1% 

  1,359  165  12.2% 
 

 
 
  



Milliman  Examples of the Basic Calculations 

Arius Stochastic User Guide 163 

USING THE HAYNE MLE ALGORITHM 

A Walkthrough of the Berquist Sherman Calculation (Paid Data) 

Note that the Hayne MLE algorithm is the same for either claim frequency or 
claim severity, so we will only illustrate the model for claim severity. 

 

STEP 1. 
CONVERT THE CUMULATIVE 
PAID DATA INTO AVERAGE 
INCREMENTAL SEVERITIES. 

Divide the cumulative paid loss 
triangle by the ultimate claim 
count, then subtract to get 
incremental severity by 
development period. 

 
CUMULATIVE PAID LOSS DATA 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750   

2011 279 638 767     

2012 311 717       

2013 308         

 

ULTIMATE CLAIM COUNT 

2009 19 

2010 14 

2011 16 

2012 18 

2013 19 

 

INCREMENTAL PAID LOSS SEVERITY DATA 

 12 24 36 48 60 

2009 18.53 22.68 13.79 7.26 5.89 

2010 18.21 22.64 9.86 2.86   

2011 17.44 22.44 8.06     

2012 17.28 22.56       

2013 16.21         

  

STEP 2.  
FIT MODEL TO THE DATA. 

Using the incremental severity 
data, fit the Berquist-Sherman 
algorithm using Maximum 
Likelihood Estimation. 

 

 
DEVELOPMENT PERIOD PARAMETERS 

 12 24 36 48 60 

Mean 18.08 23.14 10.67 8.04 8.34 

Std Dev 0.32 0.27 1.10 1.88 2.22 

 

TREND & VARIANCE PARAMETERS 

 TREND K P  AIC 

Mean -0.100 16.71 -2.66  18.85 

Std Dev 0.004 3.73 0.66   
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STEP 3. 
CALCULATE PREDICTED MEAN 
AND STANDARD DEVIATION. 

Use the fitted parameters to 
calculate the estimated mean and 
standard deviation for each 
incremental cell. 
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D = Development Parameters 

T = Trend Parameter 

C = Claim Count 

 

 

 

 
PREDICTED MEANS 

 12 24 36 48 60 TOTAL 

2009 17.90 22.91 10.56 7.96 8.24 0.00 

2010 17.72 22.68 10.46 7.88  8.16 8.16 

2011 17.55 22.45 10.35  7.81  8.08 15.88 

2012 17.37 22.23  10.25  7.73  8.00 25.97 

2013 17.20  22.01  10.15  7.65  7.92 47.72 

TOTAL      97.74 

 

PREDICTED STANDARD DEVIATIONS 

 12 24 36 48 60 TOTAL 

2009 0.45 0.24 1.85 3.91 3.57 0.00 

2010 0.54 0.28 2.21 4.68  4.28 4.28 

2011 0.52 0.27 2.12  4.50  4.11 6.09 

2012 0.51 0.26  2.05  4.36  3.98 6.25 

2013 0.50  0.26  2.05  4.36  3.98 6.25 

TOTAL      11.55 
 

 

SIMULATION STEPS 
 

 

STEP 4.  
SAMPLE RANDOM PARAMETERS. 

Using the variance / covariance 
matrix and the fitted parameters, 
sample new parameters using the 
multivariate normal distribution. 

 

 
DEVELOPMENT PARAMETERS 

 12 24 36 48 60 

Sample 18.52 23.30 12.19 8.08 11.07 

 

TREND & VARIANCE PARAMETERS 

 TREND K P 

Sample -0.008 13.53 -1.84 

  

STEP 5. 
CALCULATE SAMPLE MEAN AND 
STANDARD DEVIATION. 

Use the sampled parameters to 
calculate the sample mean and 
standard deviation for each 
incremental cell. 

 

 
SAMPLE MEANS 

 12 24 36 48 60 

2009 18.11 23.12 12.09 8.02 10.98 

2010 17.96 22.93 11.99 7.95  10.89 

2011 17.82 22.75 11.90  7.89  10.80 

2012 17.68 22.57  11.80  7.83  10.72 

2013 17.53  22.39  11.71  7.77  10.63 

 

SAMPLE STANDARD DEVIATIONS 

 12 24 36 48 60 

2009 0.96 0.61 2.02 4.29 2.41 

2010 1.13 0.72 2.38 5.08  2.85 

2011 1.07 0.69 2.26  4.82  2.70 

2012 1.03 0.66  2.16  4.61  2.58 

2013 1.02  0.65  2.14  4.56  2.55 
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STEP 6. 
INTRODUCE PROCESS VARIANCE. 

Sample each incremental cell 
using the normal distribution and 
the mean and standard deviations 
from Step 5. 

 

 

 

 
SAMPLED PAID LOSS SEVERITY WITH PROCESS VARIANCE 

 12 24 36 48 60 

2009 17.92 23.38 10.45 5.41 12.66 

2010 19.40 23.35 14.65 5.79 10.00 

2011 18.07 22.95 13.74 -3.49 15.86 

2012 18.01 22.94 14.82 17.99 9.95 

2013 19.41 22.16 10.83 13.26 9.77 
 

STEP 7. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Multiply severities by the claim 
counts and sum the future 
incremental values to estimate 
the total unpaid loss by period 
and in total (in this example, 
2,172). 

This provides one estimated 
possible outcome. 

 
TOTAL ESTIMATED INCREMENTAL PAYMENTS 

 12 24 36 48 60 TOTAL 

2009       

2010        140 140 

2011      -56 254 198 

2012    267 324 179 770 

2013  421 206 252 186 1,064 

      2,172 

  

STEP 8. 
REPEAT AND SUMMARIZE. 

Repeat Steps 4 through 7 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 
MEAN 

UNPAID 

 
STANDARD 

ERROR 

 COEFFICIENT 
OF 

VARIATION 

2009  0  0  0.0% 

2010  112  481   428.5% 

2011  251   492   195.7% 

2012  465   279  60.0% 

2013  907  341  37.5% 

  1,734  898  51.8% 
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A Walkthrough of the Cape Cod Calculation (Paid Data) 

Note that the Hayne MLE algorithm is the same for either claim frequency or 
claim severity, so we will only illustrate the model for claim severity. 

STEP 1. 
CONVERT THE CUMULATIVE 
PAID DATA INTO AVERAGE 
INCREMENTAL SEVERITIES. 

Divide the cumulative paid loss 
triangle by the ultimate claim 
count, then subtract to get 
incremental severity by 
development period. 

 
CUMULATIVE PAID LOSS DATA 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750   

2011 279 638 767     

2012 311 717       

2013 308         
 

ULTIMATE CLAIM COUNT 

2009 19 

2010 14 

2011 16 

2012 18 

2013 19 

 

INCREMENTAL PAID LOSS SEVERITY DATA 

 12 24 36 48 60 

2009 18.53 22.68 13.79 7.26 5.89 

2010 18.21 22.64 9.86 2.86   

2011 17.44 22.44 8.06     

2012 17.28 22.56       

2013 16.21         

  

STEP 2.  
FIT MODEL TO THE DATA. 

Using the incremental severity 
data, fit the Cape Cod algorithm 
using Maximum Likelihood 
Estimation. 

 

 
DEVELOPMENT PERIOD PARAMETERS 

 24 36 48 60 

Mean 1.26 0.61 0.51 0.52 

Std Dev 0.01 0.07 0.09 0.11 

 

ACCIDENT PERIOD PARAMETERS 

 LEVEL 2010 2011 2012 2013 

Mean 17.99 1.00 0.99 0.99 0.90 

Std Dev 0.16 0.01 0.01 0.01 0.02 

 

VARIANCE PARAMETERS 

 K P  AIC 

Mean 24.85 -4.25  13.92 

Std Dev 5.24 0.90   
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STEP 3. 
CALCULATE PREDICTED MEAN 
AND STANDARD DEVIATION. 

Use the fitted parameters to 
calculate the estimated mean and 
standard deviation for each 
incremental cell. 
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L = Level Parameter 

A = Accident Parameters 

D = Development Parameters 

C = Claim Count 

 

 

 

 
PREDICTED MEANS 

 12 24 36 48 60 TOTAL 

2009 17.99 22.74 10.95 9.12 9.30 0.00 

2010 17.94 22.67 10.92 9.09  9.27 9.27 

2011 17.72 22.41 10.79  8.99  9.16 18.15 

2012 17.80 22.50  10.84  9.02  9.20 29.06 

2013 16.25  20.55  9.90  8.24  8.40 47.09 

TOTAL      103.57 

 

PREDICTED STANDARD DEVIATIONS 

 12 24 36 48 60 TOTAL 

2009 0.26 0.10 2.18 4.74 4.36 0.00 

2010 0.31 0.11 2.57 5.59  5.15 5.15 

2011 0.31 0.11 2.52  5.50  5.06 7.48 

2012 0.28 0.10  2.34  5.10  4.69 7.32 

2013 0.41  0.15  3.35  7.30  6.72 10.47 

TOTAL      15.67 
 

 
SIMULATION STEPS: 
 

STEP 4.  
SAMPLE RANDOM PARAMETERS. 

Using the variance / covariance 
matrix and the fitted parameters, 
sample new parameters using the 
multivariate normal distribution. 

 

 
DEVELOPMENT PARAMETERS 

 24 36 48 60 

Sample 1.29 0.61 0.47 0.55 

 

ACCIDENT PERIOD PARAMETERS 

 LEVEL 2010 2011 2012 2013 

Sample 18.30 0.98 0.99 0.99 0.92 

 

VARIANCE PARAMETERS 

 K P 

Sample 19.63 -3.62 
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STEP 5. 
CALCULATE SAMPLE MEAN AND 
STANDARD DEVIATION. 

Use the sampled parameters to 
calculate the sample mean and 
standard deviation for each 
incremental cell. 

 

 
SAMPLE MEANS 

 12 24 36 48 60 

2009 18.30 23.53 11.11 8.56 9.96 

2010 17.98 23.12 10.92 8.41  9.79 

2011 18.07 23.24 10.98 8.45 9.84 

2012 18.11 23.28  11.00  8.47  9.86 

2013 16.87  21.69  10.25  7.89  9.19 

 

SAMPLE STANDARD DEVIATIONS 

 12 24 36 48 60 

2009 0.11 0.05 0.69 1.78 1.03 

2010 0.14 0.06 0.86 2.21  1.28 

2011 0.13 0.05 0.79 2.03  1.17 

2012 0.12 0.05  0.74 1.90  1.10 

2013 0.15  0.06  0.93 2.39  1.38 

  

STEP 6. 
INTRODUCE PROCESS VARIANCE. 

Sample each incremental cell 
using the normal distribution and 
the mean and standard deviations 
from Step 5. 

 

 

 

 
SAMPLED PAID LOSS SEVERITY WITH PROCESS VARIANCE 

 
12 24 36 48 60 

2009 18.20 23.54 11.07 7.50 11.13 

2010 17.83 23.06 11.43 8.48 11.16 

2011 18.37 23.22 11.45 7.83 10.95 

2012 17.96 23.34 10.31 8.95 8.15 

2013 16.86 21.66 10.88 8.48 11.04 
 

STEP 7. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Multiply severities by the claim 
counts and sum the future 
incremental values to estimate 
the total unpaid loss by period 
and in total (in this example, 
1,939). 

This provides one estimated 
possible outcome. 

 
TOTAL ESTIMATED INCREMENTAL PAYMENTS 

 
12 24 36 48 60 TOTAL 

2009       

2010        156 156 

2011      125 175 300 

2012    186 161 147 493 

2013  411 207 161 210 989 

 
     1,939 
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STEP 8. 
REPEAT AND SUMMARIZE. 

Repeat Steps 4 through 7 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 
 MEAN 

UNPAID 
 STANDARD 

ERROR 
 COEFFICIENT 

OF VARIATION 

2009  0  0  0.0% 

2010  130  145   119.2% 

2011  291   212   73.0% 

2012  521   243  46.6% 

2013  891  574  64.4% 

  1,832  790  43.1% 
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A Walkthrough of the Chain Ladder Calculation (Paid Data) 

Note that the Hayne MLE algorithm is the same for either claim frequency or 
claim severity, so we will only illustrate the model for claim severity. 

STEP 1. 
CONVERT THE CUMULATIVE 
PAID DATA INTO AVERAGE 
INCREMENTAL SEVERITIES. 

Divide the cumulative paid loss 
triangle by the ultimate claim 
count, then subtract to get 
incremental severity by 
development period. 

 
CUMULATIVE PAID LOSS DATA 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750   

2011 279 638 767     

2012 311 717       

2013 308         

 

ULTIMATE CLAIM COUNT 

2009 19 

2010 14 

2011 16 

2012 18 

2013 19 

 

INCREMENTAL PAID LOSS SEVERITY DATA 

 12 24 36 48 60 

2009 18.53 22.68 13.79 7.26 5.89 

2010 18.21 22.64 9.86 2.86   

2011 17.44 22.44 8.06     

2012 17.28 22.56       

2013 16.21         

  

STEP 2.  
FIT MODEL TO THE DATA. 

Using the incremental severity 
data, fit the Chain Ladder 
algorithm using Maximum 
Likelihood Estimation. 

 

 
DEVELOPMENT PARAMETERS 

 12 24 36 48 60 

Mean 0.280 0.354 0.169 0.088 0.108 

Std Dev 0.010 0.010 0.012 0.016 0.012 

 

VARIANCE PARAMETERS 

 K P  AIC 

Mean 5.69 -0.46  24.97 

Std Dev 2.05 0.39   
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STEP 3. 
CALCULATE PREDICTED MEAN 
AND STANDARD DEVIATION. 

Use the fitted parameters to 
calculate the estimated mean and 
standard deviation for each 
incremental cell. 
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S = Cumulative Severity 

D = Development Parameters 

U = Ultimate (Age-to-Ultimate) 
Development Parameters 

C = Claim Count 

 
PREDICTED MEANS 

 12 24 36 48 60 TOTAL 

2009 19.10 24.15 11.52 6.01 7.37 0.00 

2010 16.83 21.28 10.16 5.30  6.49 6.49 

2011 16.72 21.14 10.09  5.26  6.45 11.71 

2012 17.59 22.24  10.61  5.54  6.78 22.93 

2013 16.21  20.50  9.78  5.10  6.25 41.63 

TOTAL      82.76 

 

PREDICTED STANDARD DEVIATIONS 

 12 24 36 48 60 TOTAL 

2009 1.03 0.93 1.30 1.91 1.59 0.00 

2010 1.27 1.14 1.60 2.15  1.96 1.96 

2011 1.19 1.07 1.50  2.02  1.84 2.73 

2012 1.10 0.99  1.38  1.86  1.70 2.87 

2013 1.11  1.00  1.40  1.88  1.71 3.07 

TOTAL      5.39 
 

 

SIMULATION STEPS: 
 

STEP 4.  
SAMPLE RANDOM PARAMETERS. 

Using the variance / covariance 
matrix and the fitted parameters, 
sample new parameters using the 
multivariate normal distribution. 

 

 
DEVELOPMENT PARAMETERS 

 12 24 36 48 60 

Sample 0.271 0.350 0.188 0.104 0.100 

 

VARIANCE PARAMETERS 

 K P 

Sample 4.96 -0.23 

  

STEP 5. 
CALCULATE SAMPLE MEAN AND 
STANDARD DEVIATION. 

Use the sampled parameters to 
calculate the sample mean and 
standard deviation for each 
incremental cell. 

 

 
SAMPLE MEANS 

 12 24 36 48 60 

2009 18.47 23.85 12.81 7.06 6.81 

2010 15.91 20.54 11.04 6.08  5.86 

2011 16.06 20.74 11.14  6.14  5.92 

2012 17.39 22.45  12.06  6.64  6.41 

2013 16.21  20.93  11.24  6.19  5.97 

 

SAMPLE STANDARD DEVIATIONS 

 12 24 36 48 60 

2009 1.39 1.31 1.02 1.74 1.75 

2010 1.68 1.58 1.83 2.10  2.11 

2011 1.56 1.47 1.70  1.96  1.97 

2012 1.45 1.36  1.58  1.81  1.83 

2013 1.43  1.35  1.56  1.79  1.81 
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STEP 6. 
INTRODUCE PROCESS VARIANCE. 

Sample each incremental cell 
using the normal distribution and 
the mean and standard deviations 
from Step 5. 

 

 

 

 
SAMPLED PAID LOSS SEVERITY WITH PROCESS VARIANCE 

 12 24 36 48 60 

2009 18.30 23.44 13.31 8.97 9.32 

2010 14.75 24.05 11.52 3.35 5.66 

2011 14.38 19.17 10.92 2.85 7.82 

2012 17.59 22.61 11.09 9.97 5.68 

2013 15.83 19.19 12.92 7.18 7.90 
 

STEP 7. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Multiply severities by the claim 
counts and sum the future 
incremental values to estimate 
the total unpaid loss by period 
and in total (in this example, 
1,628). 

This provides one estimated 
possible outcome. 

 
TOTAL ESTIMATED INCREMENTAL PAYMENTS 

 12 24 36 48 60 TOTAL 

2009       

2010        79 79 

2011      46 125 171 

2012    200 179 102 481 

2013  365 245 136 150 896 

      1,628 

  

STEP 8. 
REPEAT AND SUMMARIZE. 

Repeat Steps 4 through 7 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 MEAN 

UNPAID 

 STANDARD 

ERROR 

 COEFFICIENT 

OF VARIATION 

2009  0  0  0.0% 

2010  91  37  40.1% 

2011  187   57   30.4% 

2012  413   66  15.9% 

2013  792  78  9.8% 

  1,484  142  9.6% 
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A Walkthrough of the Hoerl Curve Calculation (Paid Data) 

Note that the Hayne MLE algorithm is the same for either claim frequency or 
claim severity, so we will only illustrate the model for claim severity. 

STEP 1. 
CONVERT THE CUMULATIVE 
PAID DATA INTO AVERAGE 
INCREMENTAL SEVERITIES. 

Divide the cumulative paid loss 
triangle by the ultimate claim 
count, then subtract to get 
incremental severity by 
development period. 

 
CUMULATIVE PAID LOSS DATA 

 12 24 36 48 60 

2009 352 783 1,045 1,183 1,295 

2010 255 572 710 750   

2011 279 638 767     

2012 311 717       

2013 308         

 

ULTIMATE CLAIM COUNT 

2009 19 

2010 14 

2011 16 

2012 18 

2013 19 

 

INCREMENTAL PAID LOSS SEVERITY DATA 

 12 24 36 48 60 

2009 18.53 22.68 13.79 7.26 5.89 

2010 18.21 22.64 9.86 2.86   

2011 17.44 22.44 8.06     

2012 17.28 22.56       

2013 16.21         

  

STEP 2.  
FIT MODEL TO THE DATA. 

Using the incremental severity 
data, fit the Hoerl Curve 
algorithm using Maximum 
Likelihood Estimation. 

 

 
DEVELOPMENT PARAMETERS 

 LEVEL D D2 LN(D) 

Mean 9.05 -6.74 0.58 7.55 

Std Dev 0.88 0.98 0.10 0.98 

 

TREND & VARIANCE PARAMETERS 

 TREND K P  AIC 

Mean -0.011 14.78 -2.31  19.20 

Std Dev 0.005 2.94 0.53   
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STEP 3. 
CALCULATE PREDICTED MEAN 
AND STANDARD DEVIATION. 

Use the fitted parameters to 
calculate the estimated mean and 
standard deviation for each 
incremental cell. 
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L = Level Parameter 

D = Development Parameter 

D2 = Development Parameter 

Ln(D) = Development Parameter 

T = Trend Parameter 

C = Claim Count 
 

 
PREDICTED MEANS 

 12 24 36 48 60 TOTAL 

2009 17.95 22.95 10.74 6.63 8.08 0.00 

2010 17.75 22.69 10.62 6.56  7.99 7.99 

2011 17.55 22.44 10.50  6.48  7.90 14.38 

2012 17.36 22.19  10.38  6.41  7.81 24.60 

2013 17.16  21.94  10.26  6.34  7.72 46.26 

TOTAL      93.23 

 

PREDICTED STANDARD DEVIATIONS 

 12 24 36 48 60 TOTAL 

2009 0.47 0.27 1.55 4.71 2.98 0.00 

2010 0.56 0.32 1.85 5.63  3.57 3.57 

2011 0.54 0.31 1.77  5.40  3.42 6.40 

2012 0.52 0.30  1.72  5.23  3.31 6.42 

2013 0.52  0.30  1.72  5.22  3.31 6.42 

TOTAL      11.67 
 

 
SIMULATION STEPS: 
 

STEP 4.  
SAMPLE RANDOM PARAMETERS. 

Using the variance / covariance 
matrix and the fitted parameters, 
sample new parameters using the 
multivariate normal distribution. 

 

 
DEVELOPMENT PARAMETERS 

 LEVEL D D2 LN(D) 

Sample 8.69 -6.94 0.69 7.00 

 

TREND & VARIANCE PARAMETERS 

 TREND K P 

Sample -0.022 12.16 -2.01 

  

STEP 5. 
CALCULATE SAMPLE MEAN AND 
STANDARD DEVIATION. 

Use the sampled parameters to 
calculate the sample mean and 
standard deviation for each 
incremental cell. 

 

 
SAMPLE MEANS 

 12 24 36 48 60 

2009 11.10 10.76 5.51 4.89 10.90 

2010 10.85 10.53 5.39 4.78  10.65 

2011 10.61 10.29 5.27  4.67  10.42 

2012 10.37 10.06  5.15  4.57  10.19 

2013 10.14  9.84  5.04  4.47  9.96 

 

SAMPLE STANDARD DEVIATIONS 

 12 24 36 48 60 

2009 0.80 0.85 3.26 4.15 0.83 

2010 0.97 1.04 3.97 5.06  1.01 

2011 0.95 1.01 3.89  4.95  0.99 

2012 0.94 1.00  3.83  4.88  0.98 

2013 0.96  1.02  3.90  4.97  0.99 
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STEP 6. 
INTRODUCE PROCESS VARIANCE. 

Sample each incremental cell 
using the normal distribution and 
the mean and standard deviations 
from Step 5. 

 

 

 

 
SAMPLED PAID LOSS SEVERITY WITH PROCESS VARIANCE 

 12 24 36 48 60 

2009 11.86 11.31 6.64 6.55 10.84 

2010 10.96 11.28 1.15 -0.47 12.09 

2011 9.32 11.10 0.88 1.93 10.07 

2012 9.63 9.78 1.35 8.84 9.53 

2013 11.08 10.20 10.26 -2.76 9.52 
 

STEP 7. 
CALCULATE TOTAL UNPAID 
AMOUNTS. 

Multiply severities by the claim 
counts and sum the future 
incremental values to estimate 
the total unpaid loss by period 
and in total (in this example, 
1,234). 

This provides one estimated 
possible outcome. 

 
TOTAL ESTIMATED INCREMENTAL PAYMENTS 

 12 24 36 48 60 TOTAL 

2009       

2010        169 169 

2011      31 161 192 

2012    24 159 172 355 

2013  194 195 -52 181 517 

      1,234 

  

STEP 8. 
REPEAT AND SUMMARIZE. 

Repeat Steps 4 through 7 the 
specified number of times (e.g., 
10,000 or more), capturing the 
resulting cash flows and the 
unpaid amounts by period and in 
total for each iteration. The 
resulting distribution of unpaid 
amounts from all the iterations 
can be used to calculate means, 
percentiles, etc. 

 

 
TOTAL SIMULATED RESULTS 

 

 MEAN 

UNPAID 

 STANDARD 

ERROR 

 COEFFICIENT 

OF VARIATION 

2009  0  0  0.0% 

2010  116  72  61.5% 

2011  234   128   54.8% 

2012  449   148  32.9% 

2013  886  155  17.5% 

  1,686  311  18.4% 
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B. Using Diagnostics to Improve Your Model 

GENERAL BACKGROUND 

Even though the actual processes underlying the settlement of individual claims are extremely 

complex, and in fact unknowable, we can still observe the results of those processes and estimate 

possible outcomes either for individual claims or in the aggregate for all claims within a specific cohort 

of exposures. 

The traditional deterministic process of evaluating insurance liabilities typically includes a variety of 

assumptions and methods used to generate a number of point estimates. From a statistical point of 

view, this estimation process can be characterized as a search for “the” mean loss development 

pattern, which leads to a “best” central estimate.65 

As we move into the stochastic modeling world, with models such as the ODP bootstrap, that “mean” 

pattern is still relevant, but it becomes far more important to “build” a model that “captures” all of the 

statistical features in the data. As such, we are now concerned with estimating “all” possible outcomes 

and not just the “mean” path. From a statistical point of view, this estimation process can be 

characterized as a search for “the” loss development model, which leads to an estimate of the “best” 

distribution of possible outcomes. 

TAILORING THE MODEL 

As noted in Section 1, an advantage of most models is that it can be specifically “tailored” to the 

statistical features found in the data under analysis. This is particularly important as the results of any 

simulation model are only as good as the model used in the simulation process. If the model does not 

“fit” the data then the results of the simulation may not be a very good estimate of a distribution of 

possible outcomes. 

Like all models and methods, the quality of a model’s results depends on the quality of the 

assumptions. Thus, we need a variety of diagnostic tools to help us judge the quality of those 

assumptions and to change or adjust the parameters of the model depending on what statistical 

features we find in the data. In essence, we need the tools to find the model that provides the best fit 

to the data.66 

THE DIAGNOSTICS 

The diagnostic tests included in the Arius system are designed to either test various assumptions in the 

model, to allow the user to gauge the quality of the model fit, or to help guide the user in adjusting the 

model parameters. Most, if not all, of these tests are relative in nature, which means that the analyst 

can use them to “improve” the fit of the model by comparing the tests from one set of model 

parameters to another. The model will generally run properly with any set of parameters, so the 

question the analyst is trying to answer is: “which set of model parameters will give me simulations 

 

65 Using the mean development factors does not imply that the mean or expected value of the distribution is being estimated, since no 
distribution of possible outcomes is being calculated from which to calculate the expected value.  If the aggregate distribution is 
normally distributed then the mean development factors may lead to a reasonable approximation of the mean of the distribution, but 
to the extent that the aggregate distribution is skewed then the mean development factors may result in an estimate that differs 
(perhaps significantly) from the mean of the aggregate distribution. 

66 For ease of illustration, throughout Appendix B we will discuss these concepts using the ODP Bootstrap model, but they can be similarly 
applied to the other Arius models. 
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that are most realistic and most consistent with the statistical features I found in the data (or that I 

believe are in the data)?” 

Also included with some of the diagnostics are statistical tests, which can be viewed as a type of 

pass/fail test for some aspect of the model assumptions. However, for these statistical tests it is 

important to note that a “fail” result for a given test does not generally invalidate the entire model. A 

“fail” signal should only be interpreted as the possibility that a better model (or model 

parameterization) might be possible, although it is also fair to say that the more “fail” signals you see 

the more likely it is that the distribution of possible outcomes from that model may not be reasonable. 

RESIDUAL GRAPHS 

Since the simulations in the bootstrap model use the residual values to create sample triangles of 

historical data (for the default Residuals option), an important diagnostic test is to review graphs of the 

residuals to make sure that they are indeed random. Moreover, rather than simply looking at the 

residuals compared to the predicted (or actual) values it can be very useful to also look at them by 

development period, accident period and calendar period.67  Consider the residual plots in Graph B-1. 

 

 

At first glance, the residuals in these graphs appear reasonably random as this model is providing a 

reasonably good fit of the data. In addition to the residual plots (green dots), the development, 

accident and calendar graphs also include a trend line (blue line) linking the averages for each period. 

These graphs are important as they may reveal potential features in the data that we can account for 

to provide an improved model fit. 

 

67 Note that for each of these four graphs the same residuals are being plotted. In other words, this is four different views of the same 
data. 

Graph B-1: 

Residual Graphs Prior to 
Heteroscedasticity 
Adjustment 
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In this example there do not appear to be any issues with the trends, but the development period 

graph does illustrate a common issue with insurance triangle data. In this graph (upper left), you can 

see that the range of the residuals in the first three periods is not the same as the middle three nor the 

last two. What this means is the residuals in these three different sub-groups may be representative of 

three separate standard deviations. 

While the ODP bootstrap model does not require a specific type of distribution for these residuals, it is 

nevertheless important that all of the residuals are independent and identically distributed. This means 

that, at a minimum, they must share a common mean and standard deviation. This is important since 

we will be sampling with replacement from all residuals during the simulations. If the residuals do have 

different standard deviations (as shown in Graph B-1) then this is referred to in statistical terms as 

heteroscedasticity.68 

In order to adjust for this heteroscedasticity, the ODP bootstrap model allows the analyst to identify 

groups of development periods with potentially similar standard deviations, and then adjusts the 

residuals to a common standard deviation value. A set of tools for identifying these groups is included 

with the model. In the Heteroscedasticity table there are sets of relativities for each development 

period based on the standard deviation and the range of each period, respectively.   

 

 

 

68 While some papers on ODP bootstrap modeling have discussed whether the mean of the residuals should be zero or not, this is usually 
not as important a consideration as the standard deviations and adjusting for heteroscedasticity. Even after adjusting for 
heteroscedasticity, the mean of the residuals will usually not equal zero. One of the model options available is to adjust the residuals so 
that the mean is equal to zero, but this might remove a useful feature of the data so we would generally advise the analyst to test the 
impact of this option. 

Table B-1: 

Heteroscedasticity 
Relativities and Groups 
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Also in the DIAGNOSTICS collection, there are Residual Relativities graphs that can be used to help 

visualize the likely groupings of periods. These are illustrated in Graph B-2 (below) for the residuals 

shown in Graph B-1 and Table B-1. 

 

 

The relativities illustrated in Graph B-2 confirm that the residuals in the first three periods are not the 

same as the middle four or the last two, but a little testing is required to determine the optimal groups 

using the other diagnostic tests noted below. For example, looking at the standard deviation relativities 

period 7 looks like it could belong with periods 4, 5 and 6, but looking at the range relativities it looks 

like period 7 may belong with periods 1, 2 and 3. In addition, looking at periods 8 and 9 the standard 

deviation relativities look like they might be grouped with periods 1, 2 and 3 while the range relativities 

look like they might be a separate group. 

Consider the residual plots in Graph B-3, which are from the same data model after the first three 

development periods (plus period 7) and last two development periods, respectively, have been 

adjusted (separately). This grouping resulted in better improvement in the other tests described below 

compared to other groupings that were tested by grouping by eye. 

Graph B-2: 

Residual Relativities Prior to 
Heteroscedasticity 
Adjustment 
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Graph B-3: 

Residual Graphs after 
Heteroscedasticity 
Adjustment 



Using Diagnostics to Improve Your Model  Milliman 

182 Arius Stochastic User Guide 

Comparing the residual plots in Graphs B-1 & B-3, you can see that the general “shape” of the residuals 

has not changed and the “randomness” is still consistent, but now the residuals do appear to exhibit 

the same standard deviation (or homoscedasticity).69 Comparing the residual relativities in Graphs B-2 

& B-4, you can also see that the relativities are also more consistent. 

 

 

NORMALITY TEST 

Another test of the residuals is whether they come from a normal distribution or not. As noted earlier, 

the ODP bootstrap model does not depend on the residuals being normally distributed, but this is still a 

useful test for comparing parameter sets and for gauging the skewness of the residuals. For this test, 

we can use both graphs and calculated test values. Consider the normality plot (sometimes called Q-Q 

plot) in Graph B-5 for the heteroscedasticity (hereafter “hetero”) groups noted above. 

 

 

Even before the hetero adjustment, the Normality Plot looks quite good. In addition to the graph, the 

P-Value is a statistical test for normality which can be thought of as a pass/fail test with a value greater 

than 5.0% generally considered a “passing” score (of the normality test, not whether the ODP 

 

69 During the simulation process, after the residuals are randomly selected from this homoscedastistic group they are adjusted back to 
their original heteroscedastic group sizes to insure than the simulation process produces sample triangles which exhibit the same 
statistical properties as the original data. 

Graph B-4: 

Residual Relativities after 
Heteroscedasticity 
Adjustment 

Graph B-5: 

Normality & Box-Whisker 
Plots Prior to 
Heteroscedasticity 
Adjustment 
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Bootstrap model passes or fails).70 In addition to the pass/fail test, the P-Value (prior to the hetero 

adjustment) can be thought of as a gauge for the Process Variance distribution since a low value would 

be more indicative of the gamma or lognormal distribution and a higher value is more indicative of the 

normal distribution.71  Also shown with these graphs is N, which is the number of data points, and the 

well-known R2 test. 

In the Box-Whisker Plot of Graph B-5 the parameters of the normal fit are shown72 as well as the 

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). The AIC and BIC are statistical 

tests similar to the R2 test, except that they include a penalty for adding more parameters and a lower 

score indicates a better model fit. It should also be noted that the AIC and BIC tests are only relative to 

the model parameters being tested and cannot be compared between one model and another. As you 

can see in Graph B-6, the AIC and BIC increased for the hetero groups being tested which could 

indicate that the hetero groups are not optimal or that we over-parameterized the model. 

OUTLIERS 

Another useful test is to check for outliers, or values outside of the “typical” range, in the data. A very 

useful graphical test for this purpose is a Box-Whiskers plot. Consider the Graph B-5, again for the 

hetero groups noted above. 

Before the hetero adjustment, you can see that there were four outliers in the data model, which 

correspond to the two highest and two lowest values in all the previous graphs. The basic design of the 

Box-Whiskers plot is to use the box to show the inter-quartile range (the 25th to 75th percentiles) and 

the median (50th percentile) of the residuals. The whiskers then extend to the largest values that are 

less than three times the inter-quartile range. Any values beyond the whiskers are generally considered 

outliers and are identified individually with a point (in red). 

 

 

After the hetero adjustment, in Graph B-6, the residuals do not contain any outliers. If the data 

continued to contain outliers, the ODP bootstrap model contains an option to remove specific outliers 

 

70 For the interested reader, this is known as the Shapiro-Francia Test. The Null Hypothesis is typically considered to be invalid if the value 
is less than 5.0%, but as noted earlier failing this test does not generally invalidate the ODP bootstrap model. 

71 There are no definitive values here for changing from one distribution to another. But for those looking for guidance on when a 
different distribution may be beneficial in improving the model fit to the underlying data, this test can be useful for both the Residual 
Sampling Distribution and Process Variance Distribution options. 

72 If the Normal Fit option is used for Residual Sampling Distribution, then these parameters are used in the simulation process. 

Graph B-6: 

Normality & Box-Whisker 
Plots after Heteroscedasticity 
Adjustment 
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(i.e., cells or observations) from the model.73 However, if there are still a lot of outliers then this 

typically means that there is significant skewness in the data which will be replicated in the ODP 

bootstrap simulations or the model is not sufficiently “optimized” yet—i.e., some other aspect of the 

model should be adjusted first. Finally, removing only one or a few outliers should be done with 

caution as they may still represent realistic “extreme” or “skewed” values in the simulations. 

SUGGESTED HETERO GROUPS 

Even for smaller data sets the process of testing various hetero groups can be a long process and there 

is no guarantee that the optimal hetero groups74 have been found. In order to help you find the 

optimal hetero groups you can use the SUGGEST HETERO GROUPS icon in the HOME ribbon to run an 

algorithm to search for the “optimal” groups. The algorithm depends on the size of the data; all 

combinations of small data sets can be tested, but the number of combinations increases exponentially 

with size, so with larger triangles different algorithms and time constraints come into play. Essentially, 

the algorithm searches through the possible combinations of group numbers until it finds the optimal 

groups for small data sets, but as the size increases it will suggest groups that should be very close to 

optimal. 

 

 

After running the SUGGEST HETERO GROUPS algorithm, the calculated hetero groups are shown in the 

Suggested Group row of the Heteroscedasticity table, as shown in Table B-2 for the data used in this 

Appendix. While the group numbers for the Suggested Groups will be optimal they are not necessarily 

in a particular order. For example, in Table B-2 the Suggested Groups sorted from the smallest to 

largest Adjustment Factor are 3, 0, 2 and 1. Thus, the entered Group Numbers were switched so that 

they are in ascending order, but this is not a requirement as you can simply copy and paste the 

Suggested Group row into the Group Number row. 

Consider the residual plots in Graph B-7, which use the optimal hetero groups from Table B-2. 

Comparing the residual plots in Graphs B-3 & B-7, you can see that the general “shape” of the residuals 

has not changed and the “randomness” is still consistent, but interestingly the residuals appear to 

exhibit different standard deviations like we saw in Graph B-1 prior to adjusting for heteroscedasticity.  

 

73 The data represented by an outlier is not actually removed from the model. Essentially that value is given zero weight in the 
calculations described in more detail in Section 3 and Appendix A. In addition, a “removed” outlier is never selected as part of the 
sampling process in the simulations. 

74 Optimal in this case means maximum improvement of as many statistical tests as possible with the fewest parameters (i.e., hetero 
groups). 

Table B-2: 

Suggested and Selected 
Heteroscedasticity 
Relativities and Groups 
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The reason for this apparent reversal of the “homoscedasticity” of the residuals in Graph B-7 compared 

to Graph B-3 is related to the discussion of the issues regarding the groups following Graph B-2. By 

testing different combinations of groups statistically the algorithm checks the significance of each 

combination for each development period. For example, development period 4 continues to be in 

group 0 (with the largest variance), but most of the other development periods grouped by eye were 

moved to different groups considering both the variance and number of observations in each period. 

Even though the residuals in Graph B-7 don’t look like they are “better” than the residuals in Graph B-

3, the other tests tell a different story. Consider the Normality Plot in Graph B-8 for the optimal hetero 

groups shown in Table B-2. 

Compared to the test values in Graph B-6, the P-Value has significantly improved from 57.6% to 91.0% 

and the R2 test showed more improvement increasing from 98.4% to 99.1%. More importantly both 

the AIC and BIC decreased, indicating that the improvement in the other statistics did not come at the 

expense of over-parameterizing the model. Even though the optimal number of groups is more than 

we selected by setting the groups by eye, the combination used is more statistically significant. Quite 

often the optimization algorithm will find a combination with fewer groups than you might use by eye, 

but that is not necessary true and, in fact, it is possible for the algorithm to use more groups. 

Graph B-7: 

Residual Graphs after 
Optimal Heteroscedasticity 
Adjustment 
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Finally, we can check the outliers for the optimal hetero groups as shown in Graph B-8. At first glance 

comparing Graph B-8 to Graph B-6 you could get the impression that the model improvement was not 

too significant since we still have one outlier and we had previously removed all of them. However, a 

closer look reveals that the optimal groups continued to produce much more symmetry compared to 

using no hetero groups. Indeed, as noted earlier removing all outliers is not really the goal since 

including some “extreme” values in the simulation process will tend to benefit the tails of the overall 

distribution of possible outcomes. This does not mean that you should never remove outliers, just that 

you should be confident that they would represent unrealistic “extreme” values that you do not expect 

to ever reoccur. 

 

 

 

Graph B-8: 

Normality & Box-Whisker 
Plots after Optimal 
Heteroscedasticity 
Adjustment 
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C. Correlating Multiple Lines Together 

GENERAL BACKGROUND 

Correlation is a way of measuring the strength and direction of a relationship between two or more 

sets of numbers. Essentially, this is a way to measure the tendency of two variables to “move” in the 

same or opposite directions.75  

The correlation coefficient between two variables is indicated (and calculated) using a range of values 

from -100% to 100%. With positive correlation, the two variables tend to “change” in the same 

direction – i.e., when the X variable is high, the Y variable tends to be high; if X is low, Y tends to be 

low. The closer the measured correlation is to 100%, the stronger the tendency is to “move” in the 

same direction. 

Conversely, with negative correlation, the two variables tend to “move” in opposite directions – i.e., as 

the X variable increases, the Y variable tends to decrease and vice versa. The closer the measured 

correlation is to -100%, the stronger the tendency is to “move” in the opposite direction. 

A correlation of zero indicates that no relationship is anticipated between the two variables – i.e., you 

would not expect to use the values or movements in one variable to tell you anything about the value 

or movements in the second variable. In statistical terms, this is referred to as being independent. 

HOW DOES THIS AFFECT UNPAID CLAIM ESTIMATES? 

As noted in Section 1, the various models are used to estimate a distribution of possible outcomes for a 

single block or segment of business. The models are used separately for each segment, without regard 

to other segments, but each segment is usually only part of an entire book of business for a company. 

However, rather than simply “add up” the distributions for each segment, in order to estimate a 

distribution of possible outcomes for the company as a whole we need to take correlation into 

account. 

For most insurance coverages, insurance claims tend to happen independently of each other.  For 

example, Homeowners claims are usually not related to Auto Liability claims. However, one can usually 

find examples of positive correlation – e.g., catastrophes would tend to cause claims for multiple 

coverages at the same time – as well as examples of negative correlation – e.g., Workers’ 

Compensation and Unemployment claims tend to move in opposite directions such as when an 

increase in unemployment causes more Unemployment claims to be filed while there are 

correspondingly fewer employed workers that can file a Workers’ Compensation claim. 

As such, these “correlations” between multiple segments will have an impact on a distribution of 

possible outcomes for all segments combined. If we are only concerned with the expected value of the 

aggregate distribution, then we can calculate the expected value for each segment separately and add 

all the expectations together. However, if we are concerned about the distribution or trying to quantify 

a value other than the mean, such as the 75th percentile, we cannot simply sum the segments. The only 

time the sum of the distributions would be appropriate for the aggregate is when all segments are 

100% correlated with each other – a highly unlikely situation! 

 

75 Movement in this context is relative and does not necessarily imply that the average values of the observations are moving (i.e., the 
averages may or may not be increasing or decreasing).  More simply stated, we are describing the movements between one 
observation and the next and whether the corresponding movements from one observation to the next for another variable are similar 
or not.  Finally, these movements are also relative in size and shape as, for example, one variable could be very small and stable and 
the other could be very large and volatile. 
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The impact of correlation on the aggregate distribution can be illustrated graphically. 

 

 

In Graph C-1 we have kept the example simple by starting with 3 identical distributions. Then, the sum 

of the 3 segments (which is equivalent to assuming 100% correlation) results in the same identical 

distribution, except that all numbers along the Estimated Liability axis are 3 times as large. 

Alternatively, if we assume 0% correlation (i.e., independence) between the 3 segments then the 

expected value (or mean) would be the same as the sum, but the resulting aggregate distribution is 

narrower since some positive outcomes would be offset by some negative outcomes, and vice versa, 

which means that other parts of the distribution will not be the same as the sum. Thus, the values for 

every part of the aggregate distribution, except the mean, would not equal 3 times the corresponding 

value for one of the individual distributions. 

The degree to which the segments are correlated will influence the shape of the aggregate distribution. 

How significant will this impact be? That primarily depends upon three factors – how volatile (i.e., 

wide) the distributions are for the individual segments, the relative values of the amounts and how 

strongly correlated the segments are with each other. All else being equal, if there is not much 

volatility then the strength of the correlation will not matter that much. If, however, there is 

considerable volatility, the strength of correlations (or lack thereof) will produce differences that could 

be significant. 

It is important to note that the correlation between individual segments does not affect the 

distribution of either segment. It only influences the aggregate distribution of both segments 

combined. 

Graph C-1: 

The Impact of Correlation on 
Aggregate Distributions 
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THE CORRELATION MATRIX 

Since we are usually concerned about multiple segments, the best way to quickly see and understand 

the relationships between the various segments is to use a correlation matrix. This is a symmetric 

matrix of the various correlation coefficients between each pair of segments.76  It lists each segment 

down the first column and across the top row. At each intersection of two segments you will find the 

correlation coefficient describing the expected relationship between those two segments. 

 1 2 3 4 5 

1 1.00 0.25 0.11 0.34 0.42 

2 0.25 1.00 0.15 0.15 0.27 

3 0.11 0.15 1.00 -0.19 0.02 

4 0.34 0.15 -0.19 1.00 -0.36 

5 0.42 0.27 0.02 -0.36 1.00 

 

In Table C-1 above, segments 1 and 5 are expected to exhibit the strongest positive correlation with 

each other, while 4 and 5 are expected to exhibit the strongest negative correlation with each other. In 

addition to correlation coefficients, an additional output is a matrix of the p-values that correspond to 

each correlation coefficient in the correlation matrix. For each correlation coefficient, the p-value is a 

measure of the significance of the correlation coefficient, with a low value (less than 5.0%) indicating 

the coefficient is significant (i.e., likely to be correct or very close to correct) and a high value (greater 

than 5.0%) indicating the coefficient is not significantly different from zero. 

 1 2 3 4 5 

1 0.00 0.03 0.81 0.04 0.02 

2 0.03 0.00 0.45 0.63 0.07 

3 0.81 0.45 0.00 0.29 0.92 

4 0.04 0.63 0.29 0.00 0.06 

5 0.02 0.07 0.92 0.06 0.00 

 

In Table C-2 above, segments 1 and 5 exhibit the strongest p-value, while 3 and 5 are not likely to 

exhibit correlation significantly different from zero. 

MEASURING CORRELATION 

There are several ways to measure correlation, both parametric (for example, Pearson’s R) and non-

parametric (Spearman’s Rank Order, or Kendall’s Tau). Pearson's correlation coefficient may be more 

helpful if the underlying values are “normally” distributed, whereas Spearman's and Kendall's formulas 

may be more useful when distributions are not normal. 

Our model uses Spearman’s Rank Order calculation to assess the correlation between each pair of 

segments in the model. Rather than calculating the correlation of the residuals (or incremental values) 

themselves, Spearman’s formula calculates the correlation of the ranks of those residuals.77  The 

residuals to be correlated are converted to a rank order, and the differences between the ranks of 

 

76 In other words, the top right and bottom left triangles of the matrix are mirror images.  In addition, the center diagonal, where each 
segment intersects with itself, is always filled with 1’s because any variable is always perfectly correlated with itself. 

77 In point of fact, the model calculates the correlation coefficients for the unadjusted standardized Pearson residuals and the 
heteroscedasticity adjusted residuals.  This allows the user to see the impact of the Hetero adjustment on the correlation of the 
residuals. 

Table C-1: 

Sample Correlation Matrix 

Table C-2: 

P-Values for Sample 
Correlation Matrix 
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each observation of the two variables, D, are calculated. The correlation coefficient (ρ) is then 

calculated as: 

    )1(
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Two examples should prove useful at this point. Consider the residuals for the following two segments: 

 

SEGMENT A SEGMENT B 

 12 24 36 48 60   12  24 36 48 60 

2009 -1.90 -3.07 3.85 4.38 0.00  2009 -1.23  2.57 -0.98 -1.64 0.00 

2010 1.77 1.51 -0.65 -5.50   2010 -1.14  3.19 -4.74 1.56  

2011 1.10 1.74 -3.95    2011 0.16  -4.28 6.94   

2012 -0.48 0.43     2012 2.78  -2.74    

2013 0.00      2013 0.00      

 

From these residuals (resid.), we can calculate the ranks and differences (diff.) as follows for each 

observation (obs.): 

LOB A  LOB B  RANKS 

OBS.  RESID.  RANK  OBS.  RESID.  RANK  DIFF.  DIFF. 2 

1  -1.90  4  1  -1.23  5  -1  1 

2  1.77  11  2  -1.14  6  5  25 

3  1.10  8  3  0.16  8  0  0 

4  -0.48  6  4  2.78  11  -5  25 

5  -3.07  3  5  2.57  10  -7  49 

6  1.51  9  6  3.19  12  -3  9 

7  1.74  10  7  -4.28  2  8  64 

8  0.43  7  8  -2.74  3  4  16 

9  3.85  12  9  -0.98  7  5  25 

10  -0.65  5  10  -4.74  1  4  16 

11  -3.95  2  11  6.94  13  -11  121 

12  4.38  13  12  -1.64  4  9  81 

13  -5.50  1  13  1.56  9  -8  64 

              496 

 

The Spearman Rank Order correlation coefficient is calculated as: 
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For the two segments represented above, there is negative correlation between them. As a second 

example, consider the following residuals: 

  

Table C-3: 

Sample Residuals 

for Two Segments 

Table C-4: 

Calculation of  

Residual Ranks 
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SEGMENT C  SEGMENT D 

 12 24 36 48 60   12 24 36 48 60 

2009 -1.90 -3.07 3.85 4.38 0.00  2009 -1.64 -2.74 3.19 6.94 0.00 

2010 1.77 1.51 -0.65 -5.50   2010 2.78 1.56 -1.23 -4.74  

2011 1.10 1.74 -3.95    2011 0.16 2.57 -4.28   

2012 -0.48 0.43     2012 -1.14 -0.98    

2013 0.00      2013 0.00     

 

From these residuals, we can calculate the ranks and differences as follows: 

LOB C  LOB D  RANKS 

OBS.  RESID.  RANK  OBS.  RESID.  RANK  DIFF.  DIFF. 2 

1  -1.90  4  1  -1.64  4  0  0 

2  1.77  11  2  2.78  11  0  0 

3  1.10  8  3  0.16  8  0  0 

4  -0.48  6  4  -1.14  6  0  0 

5  -3.07  3  5  -2.74  3  0  0 

6  1.51  9  6  1.56  9  0  0 

7  1.74  10  7  2.57  10  0  0 

8  0.43  7  8  -0.98  7  0  0 

9  3.85  12  9  3.19  12  0  0 

10  -0.65  5  10  -1.23  5  0  0 

11  -3.95  2  11  -4.28  2  0  0 

12  4.38  13  12  6.94  13  0  0 

13  -5.50  1  13  -4.74  1  0  0 

              0 

 

The Spearman Rank Order correlation coefficient is calculated as: 
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Thus, for this second pair the business is perfectly positively correlated. 

  

Table C-6: 

Calculation of Residual 

Ranks 
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MODELING CORRELATION 

Looking deeper at the previous examples, the residuals for segment C and segment D are identical to 

the residuals for segment A and segment B, respectively. This was done to illustrate the concept of 

“inducing” correlation. Even though the values are the same, they are not in the same order, but 

comparing the relative orders to each other is how we measure correlation – i.e., how likely is one 

variable to move in the same direction as the other. Thus, the correlation between two simulated 

variables can be changed by re-sorting one compared to the other – i.e., the desired level of 

correlation can be induced by re-sorting. 

A standard method of simulating correlated variables is to simulate them from a multivariate 

distribution, after specifying the parameters and the correlations for each variable in the distribution.  

Unfortunately, this type of simulation is most easily applied when the distributions are all the same 

and they are known in advance (e.g., if they are all from a multivariate normal distribution). Since we 

are estimating the distributions with bootstrapping, we don’t know them in advance and they might 

have different shapes, a re-sorting algorithm proves to be an excellent tool for correlating the model 

distributions. 

In order to induce correlation between different segments in the bootstrap model, we first calculate 

the correlation matrix using the Spearman Rank Order correlation as illustrated above for each pair of 

segments. The model then simulates the distributions for each segment separately. Using either the 

estimated correlation matrix, or one supplied by the user, the model calculates the correlated 

aggregate distribution by re-sorting the simulations for each segment based on the ranks of the total 

unpaid for all accident years combined.78 

Another example will help illustrate this process. As noted above, the first step is to run the bootstrap 

model separately for each segment. The sample output for three segments is shown below (based on 

250 iterations). For this example, we have included results by accident year as well as by future 

calendar year, which sum to the same total. Note that other parts of the simulation output (e.g., loss 

ratios) could also be included as part of the correlation process. 

 

78 Note that the resorting is based on total values and the coefficients are based on residuals.  Correlating the residuals reflects a far 
more complex algorithm, but our research has indicated that these different approaches are reasonably consistent.  Thus, resorting is 
an easier, although quite robust, algorithm. 
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Step 1:  Simulate Individual segment Distributions 

 

SEGMENT A 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

ITERATION 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 4 18 219 366 818 … 14,513  3,669 3,268 2,160 2,393 1,469 … 14,513 

2 1 75 413 667 1,100 … 16,200  4,280 4,173 2,271 1,887 1,363 … 16,200 

3 11 -6 861 773 1,379 … 16,826  4,769 4,120 2,400 1,670 1,347 … 16,826 

4 0 126 335 1,299 543 … 17,504  5,233 3,707 3,237 1,505 1,486 … 17,504 

: :        :       

250 38 122 470 575 1,191 … 20,210  4,370 3,767 2,807 2,145 1,450 … 20,210 

                

AVG 19 118 512 782 1,015 … 19,256  5,330 4,260 3,227 2,180 1,613 … 19,256 

 
 

SEGMENT B 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

ITERATION 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 420 35 446 592 1,212 … 45,151  11,058 12,762 8,898 5,921 3,024 … 45,151 

2 233 802 302 1,484 1,621 … 23,077  10,107 6,151 2,458 2,107 941 … 23,077 

3 330 177 737 344 2,548 … 37,989  10,990 12,038 7,029 3,847 2,144 … 37,989 

4 738 68 589 540 803 … 18,430  5,291 4,377 4,267 1,776 1,833 … 18,430 

: :        :       

250 0 15 440 1,113 2,453 … 30,816  12,148 8,186 7,066 2,008 1,178 … 30,816 

                

AVG 207 500 658 954 2,213 … 31,930  10,072 8,363 5,681 3,395 2,114 … 31,930 

 
 

SEGMENT C 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

ITERATION 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 0 0 3 3 184 … 4,045  1,445 941 815 239 288 … 4,045 

2 0 0 8 2 15 … 3,022  1,432 925 305 235 29 … 3,022 

3 8 0 0 39 82 … 3,233  1,181 817 561 324 175 … 3,233 

4 0 0 5 40 86 … 3,972  1,475 1,017 748 342 327 … 3,972 

: :        :       

250 0 0 0 121 156 … 2,599  1,113 767 365 142 22 … 2,599 

                

AVG 3 3 5 45 74 … 3,495  1,228 985 584 335 201 … 3,495 
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Step 2:  Rank the Simulation Results 

The second step is to sort the simulation results based on the values of the total unpaid for all years 

combined. Sorting in ascending order gives us the rank of each simulation.79 

SEGMENT A 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

RANK 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 27 84 545 425 581 … 12,123  3,787 3,056 1,868 1,312 1,118 … 12,123 

2 27 73 250 750 491 … 12,792  3,800 3,166 2,267 936 1,081 … 12,792 

3 1 -209 23 377 692 … 12,883  3,240 3,266 2,337 1,841 1,009 … 12,883 

4 -25 200 470 488 812 … 13,240  4,100 2,611 2,392 1,440 969 … 13,240 

: :        :       

250 2 307 653 1,366 1,015 … 30,200  4,522 3,472 2,506 1,874 1,519 … 30,200 

                

AVG 19 118 512 782 1,015 … 19,256  5,330 4,260 3,227 2,180 1,613 … 19,256 

 

SEGMENT B 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

RANK 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 136 216 263 584 697 … 15,042  5,271 4,843 2,268 1,697 334 … 15,042 

2 30 434 222 142 1,822 … 15,658  6,157 4,088 2,122 1,274 1,623 … 15,658 

3 463 101 597 104 1,031 … 17,012  6,930 6,794 1,244 954 283 … 17,012 

4 182 148 618 835 1,411 … 17,236  6,957 5,052 2,522 1,942 265 … 17,236 

: :        :       

250 382 1,167 1,333 2,264 3,256 … 64,376  14,018 16,007 12,046 9,279 3,238 … 64,376 

                

AVG 207 500 658 954 2,213 … 31,930  10,072 8,363 5,681 3,395 2,114 … 31,930 

 

SEGMENT C 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 0 27 18 200 59 … 2,285  789 747 349 211 95 … 2,285 

2 92 5 1 27 15 … 2,367  807 496 652 143 116 … 2,367 
3 0 0 0 4 2 … 2,451  673 818 374 160 351 … 2,451 

4 1 0 0 5 90 … 2,524  1,068 658 145 343 213 … 2,524 

: :        :       
250 0 0 0 215 211 … 5,351  1,318 1,159 1,009 629 442 … 5,351 

                

AVG 3 3 5 45 74 … 3,495  1,228 985 584 335 201 … 3,495 

 

 

 

79 This step is actually for illustration purposes only. During actual simulations, only the ranks are needed for each iteration (separately by 
segment), which are then used in Step 4. 
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Step 3:  Generate Correlation Matrix 

The third step is to calculate the rank orders that will give us the desired correlation between each 

segment pair. The method illustrated here is to use a multivariate normal distribution with the desired 

correlation matrix and simulate random values from that distribution. Using the simulated values, the 

ranks of those simulated values will give us the rank orders for the desired correlation.80 

 MULTIVARIATE NORMAL  RANKS 

ITERATION A B C  A B C 

1 -2.652 -0.978 0.030  1 41 128 

2 -0.070 0.445 1.136  118 168 218 

3 0.030 0.643 -0.536  128 185 74 

4 0.915 1.491 0.274  205 233 152 

: :    :   

250 -0.885 1.080 0.412  47 215 165 

 

Step 4:  Re-Sort the Simulation Results Based on Correlation Ranks 

The fourth step is to re-sort the individual simulation results for each segment based on the rank 

orders from step three. After this re-sorting, the correlation coefficients for each pair should match the 

desired correlations specified in the correlation matrix from step three. 

SEGMENT A 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

RANK 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 27 84 545 425 581 … 12,123  3,787 3,056 1,868 1,312 1,118 … 12,123 

118 0 293 525 805 661 … 18,819  5,095 3,899 2,812 1,826 1,648 … 18,819 

128 1 439 388 1,038 1,215 … 19,079  4,838 3,637 3,255 1,995 2,609 … 19,079 

205 10 386 362 1,110 1,080 … 21,851  4,398 4,341 4,008 2,644 2,665 … 21,851 

: :        :       

47 1 78 516 697 740 … 16,779  5,551 4,405 2,638 1,708 1,129 … 16,779 

                

AVG 19 118 512 782 1,015 … 19,256  5,330 4,260 3,227 2,180 1,613 … 19,256 

 

SEGMENT B 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

RANK 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

41 37 240 135 462 1,170 … 23,945  6,994 6,500 5,222 2,546 1,982 … 23,945 

168 134 705 212 1,604 3,135 … 33,764  9,755 9,307 5,790 3,849 1,819 … 33,764 

185 329 18 149 1,163 1,579 … 37,006  12,598 9,414 7,085 3,852 2,311 … 37,006 

233 181 227 962 897 1,505 … 46,286  14,619 11,230 7,839 4,036 4,029 … 46,286 

: :        :       

215 55 997 763 2,100 2,944 … 41,587  13,804 8,545 8,269 4,718 2,923 … 41,587 

                

AVG 207 500 658 954 2,213 … 31,930  10,072 8,363 5,681 3,395 2,114 … 31,930 

 

80 As a technical note, the multivariate T random number generator used in our model uses the Cholesky decomposition to induce the 
desired correlation between independent random values. 
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SEGMENT C 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

RANK 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

128 0 0 0 3 70 … 3,480  1,456 788 672 167 65 … 3,480 

218 0 12 0 55 159 … 4,036  1,565 1,461 314 274 195 … 4,036 

74 0 0 2 24 29 … 3,163  1,373 824 388 410 157 … 3,163 

152 0 0 0 99 112 … 3,595  1,027 1,061 560 377 452 … 3,595 

: :        :       

165 0 0 0 8 17 … 3,644  1,205 853 786 237 357 … 3,644 

                

AVG 3 3 5 45 74 … 3,495  1,228 985 584 335 201 … 3,495 

 

Step 5:  Sum the Correlated Values 

The fifth step is to sum the re-sorted values from Step 4 across the segments to get aggregate results 

for each iteration. 

TOTAL ALL SEGMENTS COMBINED 

 TOTAL UNPAID  TOTAL CASH FLOW 

 Accident Year    Calendar Year   

ITERATION 1 2 3 4 5 … TOTAL  1 2 3 4 5 … TOTAL 

1 64 324 680 890 1,822 … 39,548  12,237 10,344 7,762 4,026 3,165 … 39,548 

2 134 1,010 737 2,464 3,956 … 56,619  16,415 14,667 8,916 5,950 3,661 … 56,619 

3 330 457 540 2,225 2,824 … 59,249  18,809 13,875 10,728 6,256 5,078 … 59,249 

4 191 612 1,324 2,106 2,698 … 71,731  20,044 16,632 12,406 7,057 7,146 … 71,731 

: :        :       

250 56 1,075 1,279 2,805 3,701 … 62,010  20,560 13,803 11,693 6,662 4,408 … 62,010 

                

AVG 230 621 1,175 1,781 3,301 … 54,681  16,629 13,609 9,493 5,910 3,928 … 54,681 

 

Step 6:  Summarize 

The final step is to use the aggregate results for all simulations to describe the distribution of unpaid 

claims from all the results, including means, percentiles, etc. All of the same summaries that are 

created for each individual segment can also be created for the aggregate results (e.g., cash flows, loss 

ratios, or graphs, etc.)  
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