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1. Getting Started with the Arius Generalized Linear Model

Generalized Linear Models (GLM) can play an essential role in claims reserving. While traditional Chain
Ladder based methods focus on the exposure and development period dimensions of a loss triangle
independently, a GLM framework allows you to account for interactions between these dimensions, as
well as changes across the calendar period dimensions. Modeling the impact of trends within these
additional dimensions may help with model performance in unstable environments, such as:

. Changes in claim settlement rates,

. Changes in case reserve adequacy,

. Changes in the mix of business by type of risk or type of claim,

= Changes in policy limits or deductibles,

. High rates of inflation or wide fluctuations in inflation rates, and

. Shifts in legal, regulatory, or social-economic environments in which an insurer operates.

In addition to this, simulating insurance claims using statistical models is complicated. One goal when
modeling any data is to calibrate the simplest model with the least assumptions and variables but with
the most significant explanatory power, also known as the principle of parsimony.

Not using enough parameters could result in not capturing all the essential features of the data. In
contrast, over-parameterization may capture features that are just a result of random fluctuations,
resulting in a non-predictive model that fits the underlying data well but is not applicable beyond that.
With a GLM framework, we have the flexibility to specify only as many parameters as we need to get a
robust model.

The purpose of this document is to provide a step-by-step guide for parameterizing and running a GLM
model within Arius. For an understanding of the statistical theory underlying GLMs, please refer to
Section 1 of the Casualty Actuarial Society’s Practitioner’s Guide to Generalized Linear Models. If you
are new to the Arius Stochastic module, please refer to the Stochastic User Guide found under HELP |
USER DOCUMENTATION.

SETTING UP A NEW MODEL
The primary analysis process looks like this:

1. Open the Arius software and use FILE | NEw to create a new project file. Select Create a New Arius
Project.

2. Provide necessary information about the data you are entering and working within the Project
Settings dialog:

. Use the Data Structure tab to change the size and structure of the triangles you are entering
into the model;

. Use the General tab to enter project information and notes; and

. Use the Segments tab to add all of the lines of business you plan to work with this model;
each line of business or reserving segment has separate data, models, and assumptions.

. Click OK on the bottom of the Project Settings dialog to finish creating a new file.

3. Use FiLE | SAVE As to save your file.

Getting Started with the Arius Generalized Linear Model
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4.  From the Home ribbon, click on the Model Options icon in the Stochastic area to open the Model
Options dialog.

. Use the Options tab to change any of the Global Options used with all stochastic models.

. The number of iterations defaults to 10,000, but you can enter any value between 1 and
1,000,000. The iteration count impacts the speed of the model (e.g., you should use a lower
number while testing models), but you should set the number of iterations high enough to
get a stable result from one run to the next.

. The seed value defaults to zero, which means that Arius simulates a new set of random
values for each simulation. If you would like to utilize the same set of random numbers each
time (e.g., to test the impact of a specific model change), you should enter a positive integer
in this field between 1 and 2,146,483,648 (=231).

. In addition to the Mean, Standard Error, Coefficient of Variation, Minimum and Maximum
values, you can specify which ten percentiles appear in the simulation results tables. By using
a Seed Value other than zero, you can specify different percentiles each time you run the
model and obtain more than ten percentile outputs.

. If you select the Yes, Term Enable Discount Rate option, then use the Term Discount tab to
either manually enter, or choose from a lookup table, a discount rate yield curve.

. If you select GLM Diagnostics for the Save Results to File option, the system provides a
PaidGLM Diagnostics output file under the
C:\Users\username\Documents\Milliman\Arius\Sim_Results folder that includes the
calibrated Design Matrix and Covariance Matrix of the specified parameters. This file
generates whenever you Run Diagnostics.

. Under the Default Model Selection tab, select the Generalized Linear Model option for
Paid/Ultimate and any other models you expect to use for every segment. The GLM can also
be enabled on a segment by segment basis, using the Choose Models dialog.

. Click OK on the bottom of the Model Options dialog to save your changes.
5. Below the Home ribbon, use the Segment dropdown list to select one of the lines of business.
6. Inthe DATA | INPUTS area of the Navigation Pane:

. Enter Paid Loss data.

. Enter Earned Premiums or Ultimate Premiums (Optional, only needed if you intend to
generate loss ratios).

7. Inthe SToCHASTIC | GENERALIZED LINEAR MODEL | MODEL ASSUMPTIONS area of the Navigation Pane:

= The default model has the Use Intercept option enabled. Before parameterizing the GLM
model, we need a baseline model to get an initial estimation of residuals. The Intercept-only
model assumes that each predicted incremental paid loss cell has the same expected value.
While it is our starting point, it is not likely to be a reasonable model.

= The Arius GLM model assumes a Log-link function and a Poisson distributed error term. The
link function explains the relationship between the underlying linear predictors and the mean
of the distribution function. The log-link function estimates logs of additive effects (which,
when exponentiated, become multiplicative), and the Poisson distribution assumes the
variance increases with the expected value of each observation. We also utilize a Gamma
distribution for the Process Variance. These parameters are common in triangular stochastic
reserving models and are the only option within the GLM model at this time.

@Note:

The simulation speed is a
function of the number of
parameters, the size of the
underlying triangles, the
number of iterations, and
whether simulation results
are saved to a CSV file.
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[N C55> Models > GLM Ass...

\Generalized Linear Model Assumptions
Paid
Use Intercept
Poisson
Log-Link
o
Gamma

8. From the Home ribbon, click on the Run Diagnostics icon and select the Run Diagnostics for
SegmentAbbr option to fill the exhibits and graphs with diagnostics.

9. In the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation Pane:

. Review the patterns in the Residual Graph window and assign parameters to one or more of
the objects.

= Open the Exposure Period Residual Plot. You have the option here to:

. Highlight all columns or a subset of columns (click on a column and scroll to the
right to select contiguous cells, such that they are highlighted in blue) and select
New Parameter button, or

= Select the Quick Add button (which is equivalent to individually selecting each
column of the residual plot and adding a level/constant parameter to each
column).

If you add a new parameter, provide a unique name, and select the type of parameter
(e.g., Level/Constant, Index, Index Squared, or Ln(Index)).

B Add Exposure Period Parameter — O *

Mame: |

(®) Level/Constant
) Index

_) Index Squared
) Ln(index)

Index Adjustment Size
® None

Positive

Negative

[] Specify Development Periods

Start End

OK Cancel

The type of parameter chosen effects the Design Matrix - the matrix of values of the
explanatory variables which attempt to explain observed data, which in our case is the
incremental paid loss. In Arius, each row of the Design Matrix represents an observation
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10.

11.

in the triangle (starting from the upper left corner and moving left-to-right, top-to-
bottom) with the successive columns corresponding to the variables and their specific
values.

. Level/Constant — Design matrix receives a value of 1 for the selected range

. Index — Design matrix receives a value equal to the period number for the selected
range—the impact of the parameter increases/decreases with the period in which
it applies (for example, the second column)

. Index Squared — Design matrix receives a value equal to the square of the period
number for the selected range

. Log Index - Design matrix receives a value equal to the natural log of the period
number for the selected range

As a simplified example, consider a single row of data. For our purposes, the period can
refer to either exposure, calendar, or development age.

Period 1 2 3 4

Value 50 75 100 45

In this example, the predicted incremental at each period (X), when adding a single
parameter across all four periods, by type, are:

= Level/Constant: PaidLossy = exp(parameter)

= Index: PaidLossy = exp(parameter * X)

= Index-Squared: PaidLossy = exp(parameter * X?)
= LoglIndex: PaidLossy = exp(parameter *In (X))

Note that period number starts at 1 for each of exposure, development, and calendar
periods. For more information on the other options within this dialog, see the section
below for Advanced Parameterization Options below.

Repeat the steps above for both the Exposure Residual Plot and Calendar Period
Residual Plot as needed.

From the Home ribbon, click on the Run Diagnostics icon and select the Run Diagnostics for
SegmentAbbr option to fill the exhibits and graphs with diagnostics.

Review the various diagnostics available within Arius to improve your model fit by adding and
removing additional parameters and reducing the influence of outliers.

Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION OR THE STOCHASTIC |
GENERALIZED LINEAR MODEL | MODEL SUMMARY area of the Navigation Pane.

Open the GLM Parameter Review object. This table summarizes parameters added to the
GLM model and displays the following, for each parameter:

Parameter — This represents the name of the parameter as specified by the user (or by
the quick add functionality). Notice that all parameter names are prefixed with an “a,”
“b,” or “c” for exposure, development, calendar periods, respectively, or “al-ax”, “b1-
bx” and “c1-cx” for parameters added via the Quick Add button. If you check the Use
Intercept option, you see an “I” for the intercept parameter, which applies to all
observations. Finally, advanced parameters that are applied to subsets of exposure or
development periods are prefixed with a “p.”

Getting Started with the Arius Generalized Linear Model
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= Applies to — The periods that parameter applies to (within the period type specified by
the parameter prefix, as outlined above).

. Coefficient — The estimate of the coefficient in the generalized linear model.
. Standard Error — The standard error of the coefficients.

= T-Statistic — The t statistic of each coefficient tests the null hypothesis that the
coefficient is zero (against the alternative that it is non-zero) given the other predictors
in the model.

. P-Value — The p-value for the T-Statistic of the hypothesis test is that the corresponding
coefficient is equal to zero or not. If the P-Value for a given parameter is higher than
a%, that parameter is not significant at the a% significance level, given the other terms
in the model.

= Toremove parameters, click on the name of the parameter (use control+click or shift+click to
select multiple parameters), and click the Delete button. Note that deleting a parameter
clears out the Parameter Review object. Clearing the results is intentional, as the coefficients
and diagnostics on the parameters no longer apply without the removed parameter. Running
Diagnostics returns parameters and diagnostics on the updated model.

Note that any other change to the model (e.g., enabling/disabling the intercept or adding
parameters) also clears out this table, to ensure consistency between the model specified
and that presented in Arius.

. Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | MODEL SUMMARY area of the Navigation
Pane.

. In addition to the Parameter Review object, you can also review the Model Fit
Diagnostics. This table displays the statistical measures of fit for the model as a whole
(versus the parameter specific measures discussed above).

. Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | MODEL DIAGNOSTICS area of the
Navigation Pane.

. Additional diagnostics for the parameterized model include:
. Diagnostic Triangles:

. Fitted Incremental Paid Loss Triangles — These show the mean result of the
calibrated model for each cell of the triangle.

. Actual v. Expected Triangle - the heat maps on this object are useful for
indicating poor fit. The goal is a distribution of colors that is random across the
triangle. Clumps of one color indicate a poor fit and may indicate the need for
additional terms.

. Standardized Pearson Residuals/Standardized Deviance Residuals — These
objects provide a way to see the values underlying the residual plots used for
model parameterization.

= Q-QPlot for Normality — This object is used to verify that your residuals are
normally distributed, to verify the validity of the parameters and assumptions in
your model.

. Box Whisker Plot of Residuals — This object can identify potential outliers that may
skew/bias results if not given reduced weight or excluded from the
parameterization

Getting Started with the Arius Generalized Linear Model



Milliman

12. Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation
Pane.

. Open Weights object. To remove an outlier, you can assign a weight of 0 in the
corresponding cell. You can also use this weights array to attach more importance to
particular cells if warranted. For more information, see the section below for Reducing Data
Point Influence with Weights & Outliers.

. After modifying parameters or outliers, you need to use the Run Diagnostics icon again to
recalculate each of the diagnostic statistics.

. Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | TAIL PARAMETERIZATION area of the
Navigation Pane:

. When simulating, the parameterized model applies to the lower right corner of the loss
triangle. In many instances, the losses may not be fully paid out by this point. If this is
the case, a tail factor can be calibrated based on the parameterized model, which is
applied when running the cash flows. For more information, see the section below for
Calibrating a Tail Factor Model.

13. Once a model (and tail factor model, if applicable) is parameterized, you can run the simulations
for this segment using the Run Simulations icon and selecting the Run Simulations for
SegmentAbbr option from the Home ribbon.

14. Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | RESULTS area of the Navigation Pane:

= The simulation process involves resampling the GLM parameters specified, creating a
squared triangle, then applying the tail factor calculation (if applicable) for the selected
number of iterations. The output generated by the Arius GLM Simulations is formatted
identically to the output from the other simulation models. Please refer to the Stochastic
User Guide (Chapter 5: Summary Output) found under HeLp | USER DOCUMENTATION for more
information.

. Iteratively adjust model parameters or options and re-run the diagnostics or simulations until
you are satisfied with the model fit and simulation performance.

15. Finally, repeat steps #5 to 14 for each line of business in the Arius project.

Getting Started with the Arius Generalized Linear Model
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ADVANCED PARAMETERIZATION OPTIONS

Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation Pane.

Index adjustment

When assigning new parameters (step 9 above), you have the option to identify the type of parameter
that you are adding to the periods selected on the residual plots. In addition to specifying the type,
there are two additional options for each added parameter.

For any Index type variables, you can specify an additive adjustment to the index (which applies prior
to applying any transformations of the index). For example, if exposure period trend exists within your
data within the 5% through 10t exposure period, assigning an Index type variable without adjustment
to those six exposure periods would result in design matrix entries with values between 5 and 10.
Applying a negative additive adjustment of 4 ensures that the first period of this trend has a design
matrix entry of 1, rather than 5.

For the GLM purposes, the exposure period numbers start at 1 for the first exposure period and
increment by 1 for each additional row, irrespective of the length of the calendar periods. Similarly, the
development period numbers start at 1 for the first development period and incremental by 1 for each
additional column, irrespective of the length of development periods. The calendar period numbers
start at 1 in the upper left-hand corner and progress incrementally through subsequent diagonals. For
symmetric triangles (where the length of development periods and exposure periods is the same), the
calendar period is equal to the development period number less the exposure period number + 1.

For asymmetrical triangles, Arius accounts for the number of development periods by adjusting the
first calendar period for each row. In the picture here (an example of an AxQ triangle), for a given cell,
the exposure period is the row number, the development period is the column number, and the
calendar period is the black value in the cell.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5 6 7 8 9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

13 14 15 16

A WN P

Apply parameters to subsets of selections

For parameters added from the exposure period plot, you can set which development periods to which
the parameter should apply. The reverse functionality exists for parameters added from the
development period plot. These options allow for parameters to only apply to a subset of the
exposure/development periods, rather than the entire highlighted column.

These parameters can account for phenomena in specific exposure/development period combinations,
such as shifts in the book of business, data availability, and payment pattern changes. This functionality
also allows the specification of a parameter for a single cell.

Assigning a parameter to a single cell is an alternative to excluding outliers from parameterization.
Parameters applied to the row, column, or diagonal containing the cell still apply, but with an
additional parameter that prevents the outlier from distorting them. For a basic one-dimensional
example, consider the table below:

Getting Started with the Arius Generalized Linear Model



Milliman

PERIOD 1 2 3 4 5 6 7 8 9 10

Incremental 10 20 30 40 75 85 70 80 90 100

There is an underlying linear trend, where the incremental payment increases by 10 for each additional
period, excluding the 5" and 6. If we were to parameterize a simple linear regression model without
accounting for this outlier, we would arrive at an intercept of 5 and a slope of 10. However, if we add a
constant parameter for the 5% period, this results in a zero intercept, a slope of 10, and a coefficient of
25 for the period parameter, which is more reflective of the actual pattern. The slope of the line
accounts for the normal growth, and the additional parameter estimates the spike.

REDUCING DATA POINT INFLUENCE WITH WEIGHTS & OUTLIERS
Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation Pane.

When reviewing diagnostics to improve your model fit (step 11 above), you have the option to specify,
on a cell-by-cell basis, the amount of weight the cell should have in the parameterization of the model.
In the Weights triangle, you can adjust this (the default is a level weight for each cell). This triangle
allows the user to assign more weight to the most recent observations (though the selection of
parameters could nullify the impact of these weights), or to give less influence to points exhibiting
large residuals (instead of excluding the points or assigning individual parameters to the cells).

The residual diagnostics, QQ-Plots, or Box-Whisker Plots may identify observations with very large
residuals. These may be referred to as outliers and can potentially influence the GLM model by shifting
the fitted values away from the bulk of the observed incremental paid losses towards the outlier
values. You can remove points from the model by assigning them zero weight.

Any excluded point does not appear on the three residual plot (and other diagnostic) objects. Any
point given non-zero weight appears on these plots. As the weights don’t impact the visualization of
the point itself, you should review the weights array alongside the parameterization objects.

CALIBRATING A TAIL FACTOR MODEL

Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | TAIL PARAMETERIZATION area of the Navigation
Pane.

The Arius GLM allows the parameterization of a model to square the triangle, effectively filling in the
lower right-hand corner of the paid loss triangle. If development for the segment under review
continues beyond the number of development periods in the Arius project, a separate tail factor model
can be calibrated based on the results of the parameterized non-tail model.

The Arius GLM utilizes an exponential decay tail factor model, with an option for the user to provide an
array of adjustment factors to tweak the results of the selected exponential decay model manually.
The tail model requires the following inputs:

. Number of Periods of Extrapolation: The number of periods of development expected beyond
the triangle (minimum 2)

. Number of adjustment nodes: The number of points in the piecewise linear adjustment to apply
to the triangle (minimum 2)

. Periods to use in the tail: Specified using checkboxes below the first table, this identifies the
development periods to use for the exponential decay model, before the piecewise linear
adjustment (minimum 2)

Getting Started with the Arius Generalized Linear Model
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Matrix of adjustment nodes: The X and Y values for a piecewise linear adjustment index that are
applied to the exponential decay to arrive at the final tail pattern

If you’ve parameterized a model, the Deterministic Completed Triangle section of the tail factor model
should be populated. If not, running diagnostics with your specified parameters, updates, and
refreshes this box. This area provides the results of the GLM for the squared triangle. The checkboxes
allow you to specify which periods calibrate the tail factor model. The tail model requires two or more
columns to be selected.

When your columns are specified, running diagnostics updates the Tail Model Diagnostics box in the
center of this object. The tail factor diagnostics are:

. the exponential decay rate indicated by the checked columns;

= the tail development factor implied by the exponential decay rate and the number of periods of
tail extrapolation; and

. the goodness of fit of the exponential decay curve to the selected columns (measured by R-
Squared).

The last two diagnostics depend on the values in the Piecewise Adjustment Factors section. The
piecewise adjustment factor array allows you to tweak the exponential decay model to be as
representative of your expectations of tail development as desired. The array takes inputs for pairs of
Tail Periods and Adjustment Points, which derive a piecewise linear pattern of adjustment factors. The
adjustment factors are multiplied by the implied exponential decay to arrive at an adjusted exponential
decay tail factor.

When the piecewise adjustment factors are equal to 100%, the model uses the unadjusted exponential
decay rate. Similarly, when the adjustment factors are 0%, there are no tail losses in that period.

For example, consider a project in which you wish for there to be five periods of extrapolated
development beyond the triangle. First, set the number of periods of extrapolation to 5, select the
columns to use in the fit, and run diagnostics. For the first pass, the diagnostics should look something
like this.

Tail Model Diagnostics

H

Implied Unadjusted Exponential Decay Rate 7644 %
Implied Unadjusted Cumulative Tail Development Factor 1.230
R-Squared 7343 %
Implied Adjusted Cumulative Tail Development Factor 1.230
Weighted Average Adjustment Applied Factor 100.00 %

Because we haven’t changed any of the piecewise adjustment nodes, the adjusted and unadjusted
implied tail factors are the same.

For this example, the first tail period losses would be equal to the last development period incremental
paid loss times 76.44%. The second tail periods losses would be equal to the last development periods
loss times 76.44%"2, and so on.

These unadjusted figures can be modified using the piecewise adjustment nodes. As a simple example,
assume we had an adjustment node for each tail period (in other words, five tail periods and five
adjustment nodes). For a simple example, leaving the adjustment points all at 100% gives us the
following tail decay pattern:

Getting Started with the Arius Generalized Linear Model
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Tail Unadjusted Adjustment Adjusted
Period Decay Factor Decay
1 76.44% 100.00% 76.44%
2 58.43% 100.00% 58.43%
3 44.67% 100.00% 44.67%
4 34.15% 100.00% 34.15%

5

26.10% 100.00% 26.10%

Here the adjusted decay pattern is equal to the product of the unadjusted decay and the adjustment
factor. Adjustment factors can be set independently for each tail period, or for specific tail periods, in
which case linear interpolation derives the adjustment factor for interim periods. In the example
below, the adjustment nodes are:

Bend Point Tail Period Adjustment Point
1 1 100.00 %
2 3 50.00 %
3 5 0.00 %

The corresponding adjustment factors and decay patterns are:

Tail Unadjusted Adjustment Adjusted
Period Decay Factor Decay
1 76.44% 100.00% 76.44%

2 58.43% 75.00% 43.83%

3 44.67% 50.00% 22.33%

4 34.15% 25.00% 8.54%

5 26.10% 0.00% 0.00%

In this case, the 5% tail period would not have any losses (due to the multiplication by zero).

The tail factor is only applicable when running simulations and does not have any impact on the
diagnostics or non-tail parameterization object.

EXTRAPOLATING TO FUTURE CALENDAR PERIODS

One of the benefits of the Arius GLM over the other stochastic models is the ability to directly
parameterize a variable that operates along the calendar period direction (i.e., the diagonal in a typical
triangle view). While the residual plots show representations of all exposure periods and all
development periods, there are calendar periods within your analysis not represented in these plots.
These periods represent the lower-right component of the triangle.

The parameter associated with the most recent calendar period of the historical data (i.e., the last
column of the calendar period residual plot) applies to future calendar periods. Any parameter
applicable to this column is extended for enough calendar periods to complete the rectangle. The
inherent assumption is that any impact that is present within the last diagonal continues similarly
through the end of the triangle.

For example, consider a 5x5 triangle with an intercept term and a single parameter, calibrated by
selecting all five columns of the calendar period residual plot, and adding a calendar period trend
variable. (All numbers illustrative)

Intercept: 10.000 Cal_Trend: -.5000

Then, for each cell in the triangle (including the lower right forecast period), the expected value of the
incremental paid losses can be calculated as exp (10 — .5CP), where CP represents the calendar
period of the cell.

Getting Started with the Arius Generalized Linear Model
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The table below shows the triangle (with forecast) for the above parameterization. Note that while the
historical experience only included five calendar periods, the resulting triangle uses calendar periods 6
through 9 to complete the lower-right portion of the triangle.

1 2 3 4 5
1 exp(10 —5=%1) exp(10 —.5*2) exp(l0—-.5%*3) exp(10—-.5%*4) exp(1l0 — .5 *
2 exp(10 — 5% 2) exp(l0 —.5%3) exp(l0 —.5=%4) exp(10 —.5%5) exp(10 — .5 %
3 exp(10 —.5%3) exp(l0 —.5%4) exp(l0 —.5%5) exp(10 —.5%6) exp(1l0 — .5 *
4  exp(10 — 5% 4) exp(10 —.5%5) exp(l0—.5%6) exp(l0—.5%7) exp(l0 — .5 *
5 exp(1l0 —.5%5) exp(l0 —.5%6) exp(l0 —.5=%7) exp(1l0 —.5%8) exp(10 — .5 *

REVIEWING THE DESIGN MATRIX

While the design matrix for the parameterized model is not viewable in the Arius desktop software, it
can be extracted to a CSV file and analyzed in other software of your choosing. The matrix can aid in
ensuring that the terms of the model are as expected. To extract the design matrix (as well as the
parameter covariance matrix), click on Model Options on the ribbon and select GLM Diagnostics from
the Save Results to File? dropdown.

With this option selected, Run Diagnostics, which creates a CSV file in the
C:\Users\YourUserName\Documents\Milliman\Arius\Sim_Results folder, with the naming convention
ProjectName_SegmentAbbreviation__PaidGLM_Diagnostics.csv. This file contains the design matrix.

The observations in the CSV file go down the triangle column by column. In other words, for a 10x10
triangle, the first ten rows of the design matrix represent the first development period for the ten
exposure periods. The next nine rows represent the second development period for the first nine
development periods, and so on.

Below the design matrix is a P by P square, which is the covariance matrix of the P parameters
specified by the model, provided for informational purposes.

Note that the CSV generates the design matrix as specified by the selected parameters, not by the
derived parameters. For example, if you add two identical parameters, only one of them has
coefficients returned, but both appear in the design matrix. This can be easily identified in the
covariance matrix, which has rows & columns entirely of zeros for parameters that were specified but
not utilized in the model.

5)
6)
7)
8)
9)

Getting Started with the Arius Generalized Linear Model
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2. GLM Case Studies

INTRODUCTION

The following case studies are included with the Arius 2020b installation, in
C:\Users\username\Documents\Milliman\Arius\DemoFiles\GLM_Case_Studies.apj.

These case studies serve as an introduction to potential applications of the GLM framework. The model
parameterized within each case study is not necessarily the optimal model for that dataset, nor are the
models applicable as out of the box solutions to other datasets.

REPLICATING THE ODP BOOTSTRAP MODEL

Several case studies highlight enhancements to the ODP Bootstrap model framework within the GLM
context. This section walks you through reproducing the ODP Bootstrap (Paid Chain Ladder)
methodology within the GLM.

The Overdispersed-Poisson (ODP) Bootstrap Paid Chain Ladder model is a particular case of a GLM with
a Level/Constant parameter for each exposure period and each development period (technically, all
but one exposure period, which serves as the base period). Therefore, replicating the ODP Paid Chain
Ladder within the Arius GLM is very straightforward:

. Quick-add parameters on the exposure period plot,

. Quick-add parameters on the development period plot,

. Remove the first development year parameter on the parameter review table; and
. Remove the intercept parameter, if applied.

. Run Diagnostics.

These steps replicate the ODP Paid Chain Ladder model (in terms of model specification). Simulated
results and degree of variability differ slightly, as the GLM model relies on parameter resampling for
simulation, while the ODP models utilize residual resampling.

Getting Started with the Arius Generalized Linear Model
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CS1 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY MODELING CATEGORICAL
VARIABLES AS CONTINUOUS (PARAMETER REDUCTION)

The typical ODP Bootstrap model utilizes a large number of parameters, one for each exposure period
and one for each development period (less one). For a 10x10 triangle, this amounts to 19 parameters
for the 55 data points. In some situations, the parameters implicit in the ODP Bootstrap model are not
statistically significant, which implies a better model can be developed simply by excluding the
parameter. In other situations, simple continuous functions exist that closely approximate the
parameters, which enables parameter reduction.

Data:
Data = Paid L
Accident
Year 12 24 36 48 60 7 84 9 108 120
2011 | 4583] 7716 9960 11.621 12857 13773 14465 14983 15363 15642
2012 5218 8681 11325 13,284 14735 15778 16,550 17,143 17,567
2013 5767 9,672 12565 14,665 16284 17472 18326 18671
2014 6124 10,187 13228 15549 17,235 18450 19,203
2015 6374 10,604 13575 15950 17,653 18953
2016 6309 10,538 13579 15809 17495
2017 5709 9,575 12410 14553
2018 5271 8769 11439
2010 4674 7746
2020 3751
100% — +
Analysis:

To get insight as to the value of the underlying parameters of
the ODP bootstrap model, we first need to reproduce it in the

Arius GLM framework, as described above. Standard
Parameter Applies to Coefficient Error T-Statistic  P-Value
al 11 8434 0.008 1043293 000 %
Now, running diagnostics provides the parameters associated B D i o ioes o
with the replicated ODP Bootstrap model, shown to the right. =) o EE) G BESW O
a5 5:5 8750 0007 17192618 0.00%
a6 &6 8739 0008 1,161.061 0.00 %
H H H H H a7 s 8.658 0.008 1073.993 0.00 %
Users interested in reducing parameters in this model may take . e o s oooe
the natural next step of plotting the coefficients, to see if any 2 93 M3 000 807057 000%
. . al0 10:10 8230 0.015 564.172 0.00 %
can be bucketed, or otherwise reduced. Plotting the exposure b2 22 0402 0006 (63758 000%
. . b3 33 (0.704) 0007  (97.176) 0.00%
period parameters (in external software) shows that the ten - s (009 00w (iBTe  000%
H HYH b5 55 1.298) 0010 (127.013) 0.00 %
individual parameters are well represented by a parabola, ” s
which means that we can likely replace these ten parameters &7 T (18000 0016 (115897 000%
) . . b8 88 2.283) 0023  (99.288) 0.00%
with three (a quadratic equatlon). 59 99 (2506) 0032 (78054  000%
b10 10:10 2.803) 0034  (51.822) 0.00 %

100% — =+
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Coscent

To make this adjustment, first, remove all ten exposure
i period parameters on the Parameter Review table.

N Next, navigate to the Exposure Period Residual Plot.
’ Highlight all of the columns of the plot, and click New
Parameter. The first new parameter’s coefficient applies
to the square of the column number. We’ll name this
k parameter “SQParam” to inform future users as to the
intent of this parameter. This parameter is of type Index
Squared, which means that the values in the design
matrix are equal to the exposure period number

squared. No index adjustment is necessary, and this
parameter should apply to all development periods.

Next, we’ll repeat this process, but add an Index parameter, named “Param.” This parameter is similar
to the “SQParam” just added. However, it is a parameter of type Index, which means the values in the
design matrix are equal to the exposure period number. Again, no index or range adjustments are
necessary.

The final component of the parabola is the intercept term, we repeat the process one more time,
adding a parameter of type Level/Constant, which means the values in the design matrix are equal to
one. Adding this parameter is identical to navigating to GLM Assumptions and checking the Use
Intercept button. Whichever your approach, click Run Diagnostics. Reviewing the Parameter Review
table shows the coefficients of these new parameters:

[N 51> Models > GLM Parameter Review

GLM Parameter Review - Paid Loss

Delete
Standard

Parameter Appliesto Coefficient Error T-Statistic  P-Value
b2 22 (0.401) 0.006 (61.839) 0.00 %
b3 33 (0.704) 0.007 (94.335) 0.00 %
b4 44 (1.005) 0009 (114359)  000%
b5 5:5 (1.296) 0011 (122.661) 0.00 %
b6 6:6 (1.601) 0013 (121.723) 0.00 %
b7 7 (1.801) 0017 (112.217) 0.00 %
b8 88 (2.284) 0.024 (96.029) 0.00 %
b9 9:9 (2.504) 0.033 (75452) 0.00 %
b10 10:10 (2.797) 0.056 (50.076) 0.0 %
aSqlerm 110 (0.020) 0.000 (50.168) 0.0 %
alinearTerm 110 0.199 0.004 48.621 0.00 %
aConstTerm 110 8.249 0.010 844123 0.0 %

100% — +

This parameterization effectively replaces the unique intercept parameters for each exposure period
with a quadratic equation:

ExposurePeriodFactor = —0.020k? + 0.199k + 8.249
Comparing the Model Fit Diagnostics before and after this adjustment below, we see an improvement

in model fit (based on AIC, BIC, and GCV metrics), using fewer parameters, making this parabolic
parameter replacement a change worth incorporating into the model.

Getting Started with the Arius Generalized Linear Model
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BEFORE PARAMETER REDUCTION AFTER PARAMETER REDUCTION

N C51> Models > M.,  — O X N C51> Models > M.,  — (]

Metric Values Metric Values
Parameters 19 Parameters 12
Degrees of Freedom 36 Degrees of Freedom 43
Scale Parameter/Dispersion 0.798 Scale Parameter/Dispersion 0.857
Mean Squared Error 1748434 Mean Squared Error 2524629
Unscaled Deviance 28.607 Unscaled Deviance 36.685
Akaike Information Criterion 586.840 Akaike Information Criterion 580.918
Bayesian Information Criterion 624.979 Bayesian Information Criterion 605.006
Generalized Cross Validation 7.840.730 Generalized Cross Validation 4.857.481
Sum of Squared Errors 62,943.636 Sum of Squared Errors 108,559.061
Regression Sum of Squares 157,291,269.219 Regression Sum of Squares 157,203,832.037
Total Sum of Squares 157,456,350.109 Total Sum of Squares 157,456,350.109
F-Statistic 630,330.930 F-Statistic 929,249.825
F-Test P-Value 0.00% F-Test P-Value 0.00 %
Ordinary R*2 99.96 % Ordinary R*2 99.93 %
Adjusted R*2 99.94 % Adjusted R*2 99.91 %

100% — + 100% — +

Parameter reduction can also similarly be accomplished by expressing predictor variables as linear and
exponential (using the natural log adjustment) functions in a similar manner to that described above.

CS2 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY INCORPORATING CALENDAR
YEAR EFFECTS (SUDDEN CHANGE)

The ODP Bootstrap model sets parameters for each Development Period and each Exposure Period.
However, there may be instances in which changes in claims payment (either amount, timing, or both)
do not follow either of these temporal directions, but instead follow the calendar year direction,
effectively creating a dependency between exposure period and development period.

Attempting to parameterize and use an ODP model that does not account for these types of changes
can introduce omitted variable bias in your reserve or distribution estimate. This example highlights a
situation where there is a sudden change in the paid triangle that persists for multiple exposure

periods.

[N €52 > Data > Paid Loss

Paid Loss - Incremental

Accident

Year 12 24 36 48 60 72 8 96 108 120

12-2000 3011 2540 2,253 1,808 1480 1030 860 733 606 512

12-2001 3641 3072 2752 2,164 1506 1,283 1094 895 740

12-2002 4064 3463 3071 2075 1681 1404 1173 970

12-2003 3011 2489 1,896 1568 1283 1020 895

12-2004 6568 4901 4,135 3352 2,772 2,247

12-2005 6750 5860 5102 4219 3420

12-2006 3,856 3,157 2,800 2,247

12-2007 6,108 5364 4617

12-2008 3704 3,253

12-2009 6,356

100% — +

Analysis:

As with the first case study, we reproduce the ODP Bootstrap parameters in the GLM framework.

Getting Started with the Arius Generalized Linear Model
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On the surface, this appears to be a reasonable
model. However, investigation of the residual plots
and the Actual to Expected triangles (either for the

ODP module or its recreation within GLM) reveals
that we’re potentially missing something with this

model. Looking at the calendar year plot (to the

right) reveals some concerns:

There is some trend in the residuals for the first few
exposure periods, which then repeats itself five
periods into the analysis. This plot is a visible sign of
some calendar year activity. The actual to expected

triangle can provide some additional insight. The

y

Pearson Residuals

Plot of

ment Period Residual Plot

iduals against Period

2m

2012 2013 2014 2015 2016 2017 2018 2019 2020

Payment Period

®) Pearson Residuals () Deviance Residuals

ODP model actual to expected shows a clear trend upwards for the first 5 diagonals, then a sudden
drop reversion, followed by a subsequent upward trend. Perhaps a new system was implemented
after 5 calendar years to attempt to correct for the upward trend.

Accident
Year 12 24 36 48 60 72 84 9 108 120
2011 0982 0.989 1.020 1.037 1.065 0.948 0.950 0.988 0.989 1.000

2012 0.99%2 0.999 1.040 1.037 0.905 0.986 1.009 1.008 1.009
2013 1.016 1.033 1.064 0911 0927 0.990 0992 1.002
2014  1.048 1.034 0915 0.959 0985 1.001 1.054
2015 1.078 0.960 0.941 0.967 1.004 1.041
2016 0953 0.989 0999 1.047 1.065
2017  1.000 0.977 1.007 1.024
2018 0971 1.018 1.018
2019 0978 1.026
2020  1.000

120%— +

Regardless of the cause, we account for this by implementing a regime variable. This variable serves as
a flag to identify the regime in which each cell is located. To do this, we use the payment period plot to
identify the periods in which the new regime exists. In the above plot, this refers to calendar periods
2005 and subsequent!. On the payment period plot, we highlight these five columns and add a new
Level/Constant parameter. Here, we call this “Regime2.”

There is no need to add a parameter for the first regime.

The logic is that the ODP model applies to this entire

triangle after we apply an adjustment factor to the last five
periods to account for the calendar period affects. If we
were to add a level/constant parameter for the first five
periods, the results of the model would be similar, with
one additional parameter, indicative of a weaker model.

Reviewing the calendar year residual plot, we see a more

favorable dispersion of residuals.

Pearson Residuals

Plot of P Residuals against P: Period
- m

u
m - m
] "o 5

. L} n L]

[ L]

L] L] = [ ] = B |

2011 2012 2013 2014 2015 2016 2077 2018 2019 2020
Payment Period

@® Pearson Residuals () Deviance Residuals

1 Recall that any parameter applying to the last column of the payment period plot will be assumed to continue for the remainder of the

development periods in the triangle.
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A review of the model fit diagnostics before and after the introduction of this variable shows an
improvement in fit, despite the additional parameter.

BEFORE REGIME VARIABLE AFTER REGIME VARIABLE

Metric Values Metric Values

Parameters 19 Parameters 20
Degrees of Freedom 36 Degrees of Freedom 35
Scale Parameter/Dispersion 6.315 Scale Parameter/Dispersion 0.657
Mean Squared Error 23,843.588 Mean Squared Error 2,202.363
Unscaled Deviance 235.024 Unscaled Deviance 22977
Akaike Information Criterion 799.243 Akaike Information Criterion 589.196
Bayesian Information Criterion 837.382 Bayesian Information Critericn 629.343
Generalized Cross Validation 106,924.879 Generalized Cross Validation 11,990.644
Sum of Squared Errors 858,369.164 Sum of Squared Errors 77,082.710
Regression Sum of Squares 158,256,423.085 Regression Sum of Squares 158179,949.416
Total Sum of Squares. 158,090,422.182 Total Sum of Squares. 158,000422.182
F-Statistic 81,996.518 F-Statistic 772,541.857
F-Test P-Value 0.00% F-Test P-Value 0.00 %
Ordinary R*2 99.46 % Ordinary R*2 99.95 %
Adjusted R42 99.19% Adjusted R*2 99.92 %

100% — + 100% — +

CS3 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY INCORPORATING CALENDAR
YEAR EFFECTS (GRADUAL CHANGE)

The previous example introduced a treatment of calendar year impacts with a binary application,
either a cell was adjusted (in the new regime), or it wasn’t. However, in many situations, the calendar
year impact is not an all or nothing venture.

For example, new claims systems can take many calendar periods to propagate to the entire triangle.
While including a binary flag for these types of system changes is better than ignoring them, they may
not be the best approach for accounting for them.

This case study showcases a loss triangle with a gradual slowdown in incremental paid losses,
introduced in the 5% calendar period, and continuing through the end of the triangle.

Data:
ata > Paid Loss
Paid Loss - Incremental
Accident
Year 12 24 36 45 60 72 84 96 108 120
201 1175 664 490 363 370 195 125 a3 34 21
2012 976 321 414 378 208 144 74 77 &0
2013 1265 721 563 307 266 94 141 43
2014 1270 732 452 279 223 86 51
2015 1497 628 413 270 131 33
2016 1187 517 270 207 106
2017 807 300 199 113
2018 522 200 118
2019 640 334
2020 169
100% — +
Analysis:

After replicating the ODP bootstrap model framework, the calendar year residual plot and the actual to
expected triangle showcase a similar phenomenon to the previous case study:
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ochastic > Parameterization
Models > Payment Period Residual Blot

Quick Add

Plot of Pearson Residuals against Payment Period

Pearson Residuals

T T T T T v T T T T
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Payment Period

(%) Pearson Residuals () Deviance Residuals

Accident
Year
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

Models > Actual vs Expected Triangle

GLM Actual vs Expected — Paid Loss

12
0.834
0.853
0912
0.985
1.163
1.160
1.174
1.137
0.982
1.000

24 36 48 60 72 84 96 108 120

0953 1.034 1.106_ 1183 1211 - 1.000
0921 1.077 - 1.042 - 0.871 1.233 -

1.051 1208 0951 1.112 0771
1149 1.044 0928 1.000 0.762-

0986 0955 0.901 _
1.022 [0.785 0.869-
0883 0.861 -

0.881 0.766
1.037

In this case, after payment year 2015, we see a continual decrease in the actual versus expected, after
an initial ramp-up from payment year 2011 through 2015. First, we'll add a “Regime2” variable. We
add this based on the data observed, but parameters could also be added based on outside
information. Say the claims department implemented a payment slowdown initiative starting in 2016.
If this was the case, it may make sense to introduce parameters a priori, and remove them if not

statistically significant.

First, we’ll introduce this parameter as a Level/Constant parameter, as we did in the previous regime
change case study:

ochastic > Parameterization
Models » Payment Period Residual Plot

New Parameter | Quick Add

Plot of Pearson Residuals against Payment Period

Pearson Residuals

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Payment Period

() Pearscn Residuals () Deviance Residuals

Accident
Year
2011

2012
2013
2014
2015
2016
2017
2018
2019
2020

Models > Actual vs Expected Triangle

GLM Actual vs Expected — Paid Loss

24 36 48 60 72 84 96 108 120

0.955 1.020 1.070_1_200 1_222- 1.000
0916 1.055 - 1.092 - 0.877 1234-
1.035 (1170 1.007 1.154 0.775

1115 1109 0967 1.022 --

1041 0992 0.918_

1.027 [0:776 0.342-

0.883 0846 0678

0.877-

1.027
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As shown in the above plot and table, this new parameter
did not materially impact the payment period residual plot,
and the Actual vs. Expected is virtually unchanged as well.
Reviewing the Parameter Review Table, we notice that the
constant regime change parameter is not statistically
significant. So, we delete this parameter and account for the
calendar year impact in another way.

Rather than having a 1/0 flag (in the design matrix) for the
updated regime, it may make sense for the first period of the
new regime would receive a 1, the second, a 2, continuing
through the highlighted periods. Solving for the parameter
in this situation would mimic the introduction of a regime
over some time.

We highlight the 6% through the 10t™. Click Add Parameter.
Here, we name the parameter Regime2IP and select Index.

m >dels > GLM Parameter Review
GLM Parameter Review - Paid Loss
Delete
Standard

Parameter Appliesto Coefficient  Emor  T-Statistic  P-Value
al 11 7234 0.081 88812 0.00 %
a2 22 7.033 0.087 81.086 0.00 %
a3 33 7.235 0080 90764  000%
a4 44 7177 0084 85263  000%
a5 55 7.199 0093 77198  000%
ab 6:6 7019 0.136 51743 0.00 %
al 7 6.626 0.155 42774 0.00 %
a8 88 6.227 0.183 34.063 0.00 %
a9 S 6582 0178 37.082  000%

210 10:10 5.237 0343 15269  000%
b2 22 (0690) 0077 (8962  000%
b3 33 (1.060) 0096  (11.091) 0.00 %
b4 44 (1.407) 0119 (11.810) 000 %
b5 55 (1.686) 0046 (11511  000%
b6 66 (2332) 0214 (10917)  000%
b7 71 (2484) 0250  (9955)  000%
b8 &8 (2.796) 0318 (8.786) 0.00 %
b9 %9 (3.177) 0455 (6.976) 000 %
b10 10:10 (4.084) 0927 (4.404) 001%
cRegime2LC 610 (0.107) 0019 (0801) 3736%
100% — +

At this point, we could click OK. However, this would introduce the parameter Regime2IP starting at
calendar period 6, with a factor of 6 x coefficient (in other words, design matrix entries for this
parameter would start at 6 in the appropriate period). To adjust this to reflect the first period of the
new regime, we turn on the negative adjustment and shift by five periods (to start at 1):

(Note that the Index Squared and LN(Index) options allow further manipulation of the design matrix
entries, either squaring the adjusted index value or taking the natural log, respectively)

Running diagnostics gives us our adjusted model parameters. Reviewing the calendar year plot and
AVE once more, we see a much better fit (though as noted earlier, not likely an optimal model for this

dataset):

lodels > Actual vs Expected Triangle
New Parameter  Quick Add
Accident
Plot of Pearson Residuals against Payment Period Year 12
2011 1.030
s 2012 0994
- [] 2013  0.989
« =« B 28
"~ . H = 2014 0970
S . H 2015 0999
. ] L i
i 2016 1010
- 2017 1.046
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2018 1.044
Payment Period 2019 0.938
*) Pearson Residuals Deviance Residuals 2020 1.000

GLM Actual vs Expected - Paid Loss

0.947 0.968
1.005 1.009
0.998 1.039
0.981 1.088
1.029 0906
0911 1.016
0.937 0932

72
1.113
1.248
0.820
0.967
0.682

84

96

1.560 0.739

0717

108
0.898 1.000 (6001 1.000
0818 1.260 1.610

120

Finally, we review the model fit diagnostics, which indicate a better fit with this updated model,

despite the increase in the number of parameters
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BEFORE REGIME VARIABLE AFTER REGIME VARIABLE

‘GLM Fit Diagnostics - Paid Loss ‘GLM Fit Diagnostics - Paid Loss

Metric Values Metric Values
Parameters 19 Parameters 20
Degrees of Freedom 36 Degrees of Freedom 35
Scale Parameter/Dispersion 17.607 Scale Parameter/Dispersion 4672
Mean Squared Error 8033.222 Mean Squared Error 910.973
Unscaled Deviance 637.834 Unscaled Deviance 160177
Akaike Information Criterion 1,081.120 Akaike Information Criterion 805463
Bayesian Information Criterion 1,119.259 Bayesian Information Criterion 645610
Generalized Cross Validation 36,024.415 Generalized Cross Validation 4959.744
Sum of Squared Errors 289195999 Sum of Squared Errors 31,884.067
Regression Sum of Squares 7,003921.939 Regression Sum of Squares 7,052,683.959
Total Sum of Squares 7,056,502.937 Total Sum of Squares 7,056,502.937
F-Statistic 2617102 F-Statistic 9400984
F-Test P-Value 0.00 % F-Test P-Value 0.00 %
Ordinary R*2 95.90 % Ordinary R*2 99.55 %
Adjusted R*2 93.85 % Adjusted R*2 9930 %

100% — =+ 100% — =+

CS4 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY ACCOUNTING FOR “SHOCK”
CLAIMS/OUTLIERS

Within the ODP Bootstrap model, significant “shock” losses can be excluded from the model
parameterization by excluding the cell in which the loss occurs. However, this is not always the ideal
treatment of these losses, and care must be taken to understand the ramifications of completely
excluding a data point from model calibration.

The Arius GLM tool offers two different approaches to handling these types of losses. The first
approach is similar to the ODP approach, merely excluding the point from model calibration. The
second is unique to the Arius GLM and can provide additional flexibility into your stochastic models.

Data:

[N C54> Data > Paid Loss

Paid Loss - Incremental

Accident

Year 12 24 36 45 60 T2 84 96 108 120

2011 | 7.525] 5118 3139 2688 1468 841 435 25 45 5

2012 5305 3944 1857 1621 829 626 112 33 30

2013 4391 3503 1615 1821 1035 302 5104 45

2014 2877 2663 1427 986 172 346 186

2015 2573 2841 985 787 568 334

2016 2691 1599 1085 861 12

2017 3066 1867 1113 824

2018 3945 3277 1601

2019 5517 4598

2020 554

100% — +

Analysis:

Notice the substantial payment in the 84t development month of Accident Year 2013. This point is an
outlier. In a deterministic model, it is highly unlikely that you would include the loss development
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factor implied by this period in your statistics. Within the ODP Bootstrap model, you can attempt to
adjust the model for this using outliers. The GLM model allows for additional functionality.

As with previous case studies, we’ll start by replicating the ODP Bootstrap model. Next, we use the
Weights object to assign no weight to this significant outlier point (2002, 84 months of development).
This approach is similar to assigning the point as an outlier in the ODP model (see the table at the end
of this section)

An alternative approach would be to allow the attritional losses for this data point to be allowed to
influence the model separately than the shock claim. By assigning a parameter unique to the cell
containing this large payment, the Arius GLM can accommodate this.

First, return each point to equal weights in the Weights object. Then, in the development year plot,
highlight the 84t month of development, and click New Parameter. This parameter is Level/Constant,
named “BulkLoss.” However, we don’t want to apply this parameter to the entire period. Use the
Specify Exposure Periods feature to limit this to the third exposure period (note, the same parameter
can be specified from the Exposure Period plot, where you’d identify specific development periods):

[ Add Development Period Parameter Now, for that cell of the triangle, the model projects

Name: | Bulkioss incurred losses as a function of the exposure date

® Level/Constant parameter, the development age parameter, and a “bulk

O Indox Squared loss” parameter.

) Ln{index)

Index Adjustment Size Running diagnostics here shows a similar model to the zero

© EJ:;EV_E weight model, as one would reasonably expect. This “Bulk

egethe Loss” adjustment is extensible to any contiguous

Spectly Exposure Periods combinations of exposure and development periods, making

sert 3 N E | it a better option if these “bulk” payments persist for
multiple periods.

While the table shows the addition of the bulk weight parameter is not necessarily a better model than
the zero weight situation, it does provide additional value, specifically about the cell that contained the
outlier.

In the Equal-Weight to All Points scenario, the incremental paid losses for the cell in question is
predicted by an accident year and exposure period parameter:

exp(a3 + b7) = exp(8.664 — 5.126) = 1,676
In the zero weight scenario, this projection is:
exp(a3 + b7) = exp(8.425 — 3.058) = 214
Finally, in the “BulkLoss” scenario, we have:
exp(a3 + b7 + BulkLoss) = exp(8.425 — 3.058 + 3.171) = 5,104

Of course, because we’re specifying this parameter specifically on one point, this accurately replicates
the empirical paid loss triangle. However, it provides additional insight, using the first two parameters.
Because these parameters are calibrated on the entire row (or column) of the triangle, they provide an
estimate for the cell, ignoring the impact of the bulk loss. This estimate is equal to the value for the
cell in the zero-weight scenario.

Here, the “BulkLoss” scenario can be split into attritional and large losses:

exp(a3 + b7) + exp (BulkLoss) = exp(8.425 — 3.058) + exp (3.171) = 214 + 4,890 = 5,104
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The 4,890 adjustment for the substantial loss can be compared to actual claim records.

CS5 - REPRODUCING TAYLOR CHAPTER 7 WITH THE ARIUS GLM

EQUAL WEIGHT TO ALL POINTS

ZERO WEIGHT TO OUTLIER

BULKLOSS PARAMETER

N C54 > Models > M N 54> Models > M...

Metric Values Metric Values Metric Values

Parameters 19 Parameters 19 Parameters 20
Degrees of Freedom 36 Degrees of Freedom 35 Degrees of Freedom 35
Scale Parameter/Dispersion 347.135 Scale Parameter/Dispersion 49.553 Scale Parameter/Dispersion 49.533
Mean Squared Error 628431.599 Mean Squared Error 68,928.598 Mean Squared Error 68,928.598
Unscaled Deviance 11,986.623 Unscaled Deviance 2,081.755 Unscaled Deviance 2,091.755
Akaike Information Criterion 12,498.805 Akaike Information Criterion 2,593.651 Akaike Information Criterion 2,606.027
Bayesian Information Criterion 12,537.034 Bayesian Information Criterion 2631442 Bayesian Information Criterion 2,646,173
Generalized Cross Validation 2,818,156.927 Generalized Cross Validation 329,834.112 Generalized Cross Validation 375277923
Sum of Squared Errors 22 623,537.552 Sum of Squared Errors 2.412,500.932 Sum of Squared Errors 2412 500.932
Regression Sum of Squares 162,255,619.050 Regression Sum of Squares 171,173,594.336 Regression Sum of Squares 181,240,565.908
Total Sum of Squares 180,173,354.109 Total Sum of Squares 170,106,382.537 Total Sum of Squares 180,173,354.109
F-Statistic 1.042.658 F-Statistic 6,996,751 F-Statistic 7022322
F-Test P-Value 0.00 % F-Test P-Value 0.00 % F-Test P-Value 0.00 %
Ordinary R*2 87.44% Ordinary R*2 98.58 % Ordinary R*2 98.66 %
Adjusted R*2 81.17 % Adjusted R*2 97.85% Adjusted R*2 97.93 %

100% — + 100% — + 100% — +

Within this case study, we use the Arius software to reproduce the Generalized Linear Model found in
the CAS Monograph #3--Stochastic Loss Reserving Using Generalized Linear Models by Taylor &
McGuire? (ultimately, we reproduce formula 7-10 within the case study3). While the diagnostics
available within Arius are not identical to those found in the Taylor monograph, there is enough insight
available to walk through this example from data to results.

Data:

The data used for this case study is the same as that found in Taylor. The triangle has been obtained
from the database of Meyers and Shi* (2011). The triangle represents workers’ compensation data
from the New Jersey Manufacturers Group. The exposure periods in the case study do not match
those from the database.

2 Stochastic Loss Reserving Using Generalized Linear Models, Greg Taylor and Grainne McGuire, 2016

https://www.casact.org/pubs/monographs/papers/03-Taylor.pdf

3 The WC segment of the Arius_Stochastic_Sample.apj file reproduces Taylor formula 7-14 (Table 7-5).

4 Meyers, G. G., and P. Shi. 2011. The Retrospective Testing of Stochastic Loss Reserve Models. Casualty Actuarial Society E-Forum, Summer
2011. http://www.casact.org/ pubs/forum/11sumforum/Meyers-Shi.pdf.
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W C56 > Data > Paid Loss

GLM Insurance Company
Reproducing Taylor Monograph Formula 7-14

Evaluation as of 12/31/2020

Paid Loss - Incremental
Accident

Year 12 24 36 43 60 72 84 96 108 120
2011 34729 20147 15965 11285 5924 4775 3742 3435 2958
2012 48167 39495 24444 18178 10840 7379 5683 4758 3959

2013 52058 47459 27359 17916 11448 8846 5869 35391

2014 57251 49510 27036 20871 14304 10552 7742

2015 59213 54129 29566 22484 14,114 10,000

2016 59475 52076 26836 22332 14758

2017 65607 44648 27062 22,6535

2018 56,748 39315 26748

2019 52212 40,030

2020 43962
100% — +
Analysis:
Taylor’s Chapter 7 builds on what he calls the Cross W 6> Models > GLM Parameter Review
Classified model, with a parameter for each accident GLM“"‘“ fevenSPadlo=
period and each exposure period. The Cross Classified Standard
. . Parameter Appliesto Coefficient Error T-Statistic  P-Value
model is effectively the ODP bootstrap model. To a1 11 10657 0032 336795  000%
reproduce this table, we first Run Diagnostics with an = 22 D Wiy dnaw Wb
a3 33 10.899 0.029 377.465 0.00 %
intercept only model to activate the residual plots, then ad 44 10080 0028 301327  0.00%
Quick Add parameters on both the Exposure Period and = ¥ e 0eEy AR WITE
. ab 6:6 11.018 0.029 385.868 0.00 %
Development Period plots. a7 77 11008 0029 373734 000%
a8 88 10.891 0.033 333463 0.00 %
To reproduce this exactly, we elect to alias the first = =) TEE) ChEy o R [
alo 10:10 10.691 0.051 209.454 0.00 %
deVeIOpment period parameter, by deleting the “b1” b2 29 (0.205) 0.022 (8.993) 0.00 %
parameter from the Parameter Review table. If we did ) BmAE) O (HESE) @IDs
i R L b4 44 (1.0 0033 (30954) 0.00%
not make this selection, results would be similar, but - S5 (452 004 (Adds)  000%
Arius would select which parameter to alias. In the bs 66 (1.833) 0055 (33405 000%
. . . . . . . b7 77 (2.140) 0.072 (29.933) 0.00 %
interest of replication, we make this determination in i e e
advance. b9 99  (2513) 0127 (19.831)  000%
b10 10:10 (2.664) 0.199 (13.369) 0.00 %
100% — +

Next, run diagnostics. After the run is completed, the
GLM Parameter Review table exactly matches Table 5-1
in the Taylor monograph (see screenshot to the right).

Taylor’s next step is to plot the exposure period parameters (those prefixed with an “a” against the
exposure period. As with our first case study above (Parameter Reduction), these exposure period
parameters can be approximated by a quadratic curve.

We make the same replacement as we did in the first case study. First, remove all ten exposure period
parameters on the Parameter Review table. Next, navigate to the Exposure Period Residual Plot.
Highlight all of the columns of the plot, and click New Parameter. The first new parameter’s
coefficient is applied to the square of the column number. We’ll name this parameter “SqTerm” to
inform future users as to the intent of this parameter. The parameter is of type Index Squared, which
means that the values in the design matrix are equal to the exposure period number squared. No
index adjustment is necessary, and this parameter should apply to all development periods.

Next, we'll repeat this process, but add an Index parameter, named “LinearTerm.” This parameter is
identical to the “SqTerm” just added, but with the parameter type Index, which means the values in
the design matrix is equal to the exposure period number. Again, no index or range adjustments are
necessary.
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Finally, the Taylor paper forgoes the inclusion of an intercept term on this quadratic, electing instead
to restore “b1” as a free parameter (remember we had aliased this parameter above). We do this by
clicking the Quick Add button on the development period residual plot.

Then, click Run Diagnostics. Reviewing the Parameter Review table shows the coefficients of these
new parameters. The model represented by Taylor’s formula 7-2 has coefficients, as seen in the
screenshot to the left.

The next enhancement Taylor makes to the model is to apply similar parameter reduction techniques
to the development year parameters.

Taylor notes that a linear spline (with a knot at 7.5) well represents these parameters. The RA2 value
of a linear fit to the first seven parameters is 99.4%, and the R"2 of a linear fit to the last three
parameters is 99.9%. Fitting a line to all ten parameters (removing the knot) yields an R*2 of 97.7%.
To reproduce Taylor, we replicate the spline, which is defined by two parameters:

b = { SplineA(x — 1) forx < 7.5
* = (SplineB(x — 7.5) forx > 7.5

Building this spline into the Arius GLM requires two development year parameters. The first applies to
the first seven development periods, and the second applies to the remaining three. Asin Taylor, we
parameterize the second spline as being an adjustment to the first. Formulaically, this is:

b = { SplineA(x — 1) forall X

* 7 (SplineA(x — 1) + SplineB(x — 7.5) forx > 7.5
To parameterize the first, highlight all ten columns of the development period plot, and click New
Parameter. This new parameter (Spline A) is an index parameter, where the first highlighted column
receives an entry of 1 in the design matrix, with each subsequent column increasing by 1. However, to
force this parameter to start at zero (for the first column), we perform a negative index adjustment of
size 1.

For Spline B, we perform a similar mechanic, first highlighting the last three columns of the

development period plot, and adding a new index parameter with a negative index adjustment of size
7.5.

[N Add Development Period Parameter - O X | W Add Development Period Parameter

Name: | splinea

O Level/Constant
® Index

O Index Squared
O Ln{index)

Index Adjustment Size

O None
O Positive

® Negative

[] Specify Exposure Periods
Start End

Name: | Spline

) Level/Constant
®) Index

© Index Squared

© Ln(index)

Index Adjustment Size [75

e
O Positive

® Negative

[] Specify Exposure Periods

Start End

Next, Taylor introduces the intercept term at this point. Navigate to the GLM Model Assumptions
window and check the Use Intercept box. Taylor also includes a unit regressor (in development period
2) in the model. In Arius, this can be done by adding a parameter to development period 2 by
highlighting that column of the development period plot, clicking Add New, and naming a
level/constant parameter.
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Lastly, we delete the individual development year parameters from the Parameter Review table and
Run Diagnostics.

We now have a model that replicates Taylor’s Formula 7-10, and the parameters within Table 7-3:

[ <56 > Models > GLM Parameter R

‘GLM Parameter Review - Paid Loss

Delete
Standard

Parameter Applies to Coefficient Error T-Statistic  P-Value
1 All 10469 0.035 297.896 0.00 %
aSqTerm 1:10 (0.018) 0.001 (13.018) 0.00 %
alinearTerm 110 0.200 0.014 13.867 0.00 %
bSplineA 1:10 (0.338) 0.006  (59.409) 0.00 %
bSplineB 810 0.236 0.059 3.996 002 %
bUnitR 2:2 0.134 0.019 7932 0.00 %

100% — +
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3. Frequently Asked Questions

Why do some of my specified parameters have zero coefficients and blank goodness
of fit measures?

This situation is caused by duplication or redundancies in the parameters. The Arius GLM
performs automatic aliasing using QR factorization with the Householder transform to determine
how many independent columns there are in the design matrix and then fits that many
parameters.

Why do | need two-tail periods and adjustment nodes for my tail factor model?

The piecewise adjustment fit requires two or more points for proper specification. For a one-
period tail model, set the number of periods of extrapolation to two and set the second
adjustment node to zero. A tail set in this manner results in one (non-zero) period of extrapolated
results beyond your triangle.

Why did | receive an error message stating “Iteration limit is reached. The model did
not converge. The validity of the model fit is questionable”?

The flexibility of the Arius GLM introduces the possibility of developing a model that does not
converge within the number of permutations performed by the system. This can happen in the
rare case when there is a parameter assigned to a range of cells all containing an incremental paid
loss of 0. When you receive this error, your model requires simplification. Ensure that all specified
parameters apply to ranges of cells containing at least one non-zero incremental paid loss.

What happens when | modify structure (e.g., roll-forwards, compression)?

As of Arius 2020b, the GLM model is cleared whenever the underlying data structure of the model
is changed.

Can | weight the GLM with existing models? Can | weight multiple GLMs together?

While the GLM model is parameterized independently of the other stochastic models, and users
are restricted to a single GLM in a given segment (at a time), these tasks can both be
accomplished using the Arius Stochastic Compilation Module. Results from one (or more) GLMs
can be saved to a CSV file using the All Incrementals, by Iteration option, which generates a file
formatted for use in the compilation module.

How does the Arius GLM account for a partial last diagonal or a shorter first
development age?

Arius automatically accounts for these situations when simulating. However, it does not account
for these when parameterizing. Arius requires you to set a Level/Constant parameter that applies
only to the last diagonal in the event of a partial last diagonal. Arius does not require a separate
parameter for a short first development age. However, not including one causes a shorter
incremental payment period to be treated the same as the remainder of the triangle, so it is highly
recommended.

How does the Arius GLM account for the All Prior row?

Arius does not distinguish between the all prior row and the remainder of the triangle within the
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GLM. Therefore, care must be taken to ensure any all prior row does not adversely influence the
model fit. The prior row can be accommodated by excluding the all-prior row (by assigning those
points zero weight), or by specifying parameters unique to the all prior row.

I assigned zero weight to points in my triangle; why do | still see residuals for that cell?

Unlike the ODP model, where excluding a point results in no residual being displayed and
calculated for an excluded cell, the GLM calculates a residual for each point in the triangle, as a
function of the parameters specified. When excluding points, they are being excluded from the
derivation of the parameters, and the parameters specified generates a predicted value for that
cell.

Can | use the GLM as a Deterministic Method?

While the Arius GLM is only available to Arius Stochastic licensees, these users can utilize the GLM
as an indication of ultimate loss for deterministic reserving. Simply calibrate your GLM as usual
and copy the Ultimate Loss column from the Deterministic Calculations object into a User
Defined Loss Method, and incorporate the GLM within your Comparison of Ultimate Loss reports.

Why do empty triangle cells result in two empty residual/fitted cells within the GLM
diagnostics?

This situation is caused by the conversion of a cumulative loss triangle to an incremental loss
triangle within the calculation engine. If a cumulative data point is empty, the subsequent
populated cell is not assumed to represent an actual incremental paid loss value, which is what
the GLM model is framed around.

Why doesn’t my RSS, AIC, or BIC match the ODP model when replicating the
parameterization?

The two model families rely on different calculations for these components. The RSS in the ODP
Bootstrap model is used to determine how well the residuals fit a normal distribution, not how
well the model fits the data. Within the GLM, the RSS measures the fit to the data.

The AIC/BIC differences are also due to this difference, the RSS used in the AIC/BIC calculations
under the ODP model determines how well the residuals fit a normal distribution. Again, the GLM
AIC/BIC measures the fit to the data.

Why do | see 1.0 or some negative value in my Fitted Incrementals triangle?

If you see unrealistic values in your fitted incremental triangle (1’s or negative numbers), it is likely
due to there being no parameter assigned to that cell of the triangle. Users should take care to
ensure that each cell has at least one parameter applied to it, and reviewing the Fitted
Incrementals object is a quick way to see if a parameter may be missing.

How can | validate my model?

In a triangular reserving model, it is impossible to perform out of sample testing because all of the
data is used in model calibration. The Model Diagnostics object provides a summary of the
model’s goodness of fit. For those looking for a more traditional GLM validation tool, the
Generalized Cross-Validation metric provides an approximation for leave-one-out K-fold cross-
validation.
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