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1. Getting Started with the Arius Generalized Linear Model 

Generalized Linear Models (GLM) can play an essential role in claims reserving. While traditional Chain 

Ladder based methods focus on the exposure and development period dimensions of a loss triangle 

independently, a GLM framework allows you to account for interactions between these dimensions, as 

well as changes across the calendar period dimensions. Modeling the impact of trends within these 

additional dimensions may help with model performance in unstable environments, such as: 

 Changes in claim settlement rates, 

 Changes in case reserve adequacy, 

 Changes in the mix of business by type of risk or type of claim, 

 Changes in policy limits or deductibles, 

 High rates of inflation or wide fluctuations in inflation rates, and 

 Shifts in legal, regulatory, or social-economic environments in which an insurer operates.  

In addition to this, simulating insurance claims using statistical models is complicated. One goal when 

modeling any data is to calibrate the simplest model with the least assumptions and variables but with 

the most significant explanatory power, also known as the principle of parsimony.  

Not using enough parameters could result in not capturing all the essential features of the data. In 

contrast, over-parameterization may capture features that are just a result of random fluctuations, 

resulting in a non-predictive model that fits the underlying data well but is not applicable beyond that. 

With a GLM framework, we have the flexibility to specify only as many parameters as we need to get a 

robust model.  

The purpose of this document is to provide a step-by-step guide for parameterizing and running a GLM 

model within Arius. For an understanding of the statistical theory underlying GLMs, please refer to 

Section 1 of the Casualty Actuarial Society’s Practitioner’s Guide to Generalized Linear Models. If you 

are new to the Arius Stochastic module, please refer to the Stochastic User Guide found under HELP | 

USER DOCUMENTATION.  

SETTING UP A NEW MODEL 

The primary analysis process looks like this: 

1. Open the Arius software and use FILE | NEW to create a new project file. Select Create a New Arius 

Project.  

2. Provide necessary information about the data you are entering and working within the Project 

Settings dialog: 

 Use the Data Structure tab to change the size and structure of the triangles you are entering 

into the model; 

 Use the General tab to enter project information and notes; and 

 Use the Segments tab to add all of the lines of business you plan to work with this model; 

each line of business or reserving segment has separate data, models, and assumptions. 

 Click OK on the bottom of the Project Settings dialog to finish creating a new file. 

3. Use FILE | SAVE AS to save your file. 
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4. From the Home ribbon, click on the Model Options icon in the Stochastic area to open the Model 

Options dialog. 

 Use the Options tab to change any of the Global Options used with all stochastic models.  

 The number of iterations defaults to 10,000, but you can enter any value between 1 and 

1,000,000. The iteration count impacts the speed of the model (e.g., you should use a lower 

number while testing models), but you should set the number of iterations high enough to 

get a stable result from one run to the next.  

 The seed value defaults to zero, which means that Arius simulates a new set of random 

values for each simulation. If you would like to utilize the same set of random numbers each 

time (e.g., to test the impact of a specific model change), you should enter a positive integer 

in this field between 1 and 2,146,483,648 (=231 ).  

 In addition to the Mean, Standard Error, Coefficient of Variation, Minimum and Maximum 

values, you can specify which ten percentiles appear in the simulation results tables. By using 

a Seed Value other than zero, you can specify different percentiles each time you run the 

model and obtain more than ten percentile outputs. 

 If you select the Yes, Term Enable Discount Rate option, then use the Term Discount tab to 

either manually enter, or choose from a lookup table, a discount rate yield curve. 

 If you select GLM Diagnostics for the Save Results to File option, the system provides a 

PaidGLM Diagnostics output file under the 

C:\Users\username\Documents\Milliman\Arius\Sim_Results folder that includes the 

calibrated Design Matrix and Covariance Matrix of the specified parameters. This file 

generates whenever you Run Diagnostics. 

 Under the Default Model Selection tab, select the Generalized Linear Model option for 

Paid/Ultimate and any other models you expect to use for every segment. The GLM can also 

be enabled on a segment by segment basis, using the Choose Models dialog. 

 Click OK on the bottom of the Model Options dialog to save your changes. 

5. Below the Home ribbon, use the Segment dropdown list to select one of the lines of business. 

6. In the DATA | INPUTS area of the Navigation Pane: 

 Enter Paid Loss data. 

 Enter Earned Premiums or Ultimate Premiums (Optional, only needed if you intend to 

generate loss ratios). 

7. In the STOCHASTIC | GENERALIZED LINEAR MODEL | MODEL ASSUMPTIONS area of the Navigation Pane: 

 The default model has the Use Intercept option enabled. Before parameterizing the GLM 

model, we need a baseline model to get an initial estimation of residuals. The Intercept-only 

model assumes that each predicted incremental paid loss cell has the same expected value. 

While it is our starting point, it is not likely to be a reasonable model.  

 The Arius GLM model assumes a Log-link function and a Poisson distributed error term. The 

link function explains the relationship between the underlying linear predictors and the mean 

of the distribution function.  The log-link function estimates logs of additive effects (which, 

when exponentiated, become multiplicative), and the Poisson distribution assumes the 

variance increases with the expected value of each observation. We also utilize a Gamma 

distribution for the Process Variance. These parameters are common in triangular stochastic 

reserving models and are the only option within the GLM model at this time.  

Note: 

The simulation speed is a 
function of the number of 
parameters, the size of the 
underlying triangles, the 
number of iterations, and 
whether simulation results 
are saved to a CSV file. 
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8. From the Home ribbon, click on the Run Diagnostics icon and select the Run Diagnostics for 

SegmentAbbr option to fill the exhibits and graphs with diagnostics. 

9. In the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation Pane: 

 Review the patterns in the Residual Graph window and assign parameters to one or more of 

the objects. 

 Open the Exposure Period Residual Plot. You have the option here to: 

 Highlight all columns or a subset of columns (click on a column and scroll to the 

right to select contiguous cells, such that they are highlighted in blue) and select 

New Parameter button, or  

 Select the Quick Add button (which is equivalent to individually selecting each 

column of the residual plot and adding a level/constant parameter to each 

column).  

If you add a new parameter, provide a unique name, and select the type of parameter 

(e.g., Level/Constant, Index, Index Squared, or Ln(Index)).  

 

The type of parameter chosen effects the Design Matrix - the matrix of values of the 

explanatory variables which attempt to explain observed data, which in our case is the 

incremental paid loss. In Arius, each row of the Design Matrix represents an observation 
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in the triangle (starting from the upper left corner and moving left-to-right, top-to-

bottom) with the successive columns corresponding to the variables and their specific 

values. 

 Level/Constant – Design matrix receives a value of 1 for the selected range 

 Index – Design matrix receives a value equal to the period number for the selected 

range—the impact of the parameter increases/decreases with the period in which 

it applies (for example, the second column)  

 Index Squared – Design matrix receives a value equal to the square of the period 

number for the selected range 

 Log Index - Design matrix receives a value equal to the natural log of the period 

number for the selected range 

As a simplified example, consider a single row of data.  For our purposes, the period can 

refer to either exposure, calendar, or development age. 

Period 1 2 3 4 

Value 50 75 100 45 

In this example, the predicted incremental at each period (X), when adding a single 

parameter across all four periods, by type, are: 

 Level/Constant:  𝑃𝑎𝑖𝑑𝐿𝑜𝑠𝑠𝑋 = exp(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 

 Index:  𝑃𝑎𝑖𝑑𝐿𝑜𝑠𝑠𝑋 = exp(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∗ 𝑋) 

 Index-Squared:  𝑃𝑎𝑖𝑑𝐿𝑜𝑠𝑠𝑋 = exp(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∗ 𝑋2) 

 Log Index:  𝑃𝑎𝑖𝑑𝐿𝑜𝑠𝑠𝑋 = exp(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∗ ln⁡(𝑋))⁡ 

Note that period number starts at 1 for each of exposure, development, and calendar 

periods. For more information on the other options within this dialog, see the section 

below for Advanced Parameterization Options below.  

 Repeat the steps above for both the Exposure Residual Plot and Calendar Period 

Residual Plot as needed. 

10. From the Home ribbon, click on the Run Diagnostics icon and select the Run Diagnostics for 

SegmentAbbr option to fill the exhibits and graphs with diagnostics. 

11. Review the various diagnostics available within Arius to improve your model fit by adding and 

removing additional parameters and reducing the influence of outliers.  

 Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION OR THE STOCHASTIC | 

GENERALIZED LINEAR MODEL | MODEL SUMMARY area of the Navigation Pane. 

  Open the GLM Parameter Review object. This table summarizes parameters added to the 

GLM model and displays the following, for each parameter: 

 Parameter – This represents the name of the parameter as specified by the user (or by 

the quick add functionality). Notice that all parameter names are prefixed with an “a,” 

“b,” or “c” for exposure, development, calendar periods, respectively, or “a1-ax”, “b1-

bx” and “c1-cx” for parameters added via the Quick Add button. If you check the Use 

Intercept option, you see an “I” for the intercept parameter, which applies to all 

observations.  Finally, advanced parameters that are applied to subsets of exposure or 

development periods are prefixed with a “p.” 
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 Applies to – The periods that parameter applies to (within the period type specified by 

the parameter prefix, as outlined above). 

 Coefficient – The estimate of the coefficient in the generalized linear model. 

 Standard Error – The standard error of the coefficients. 

 T-Statistic – The t statistic of each coefficient tests the null hypothesis that the 

coefficient is zero (against the alternative that it is non-zero) given the other predictors 

in the model.  

 P-Value – The p-value for the T-Statistic of the hypothesis test is that the corresponding 

coefficient is equal to zero or not. If the P-Value for a given parameter is higher than 

𝛼%, that parameter is not significant at the 𝛼% significance level, given the other terms 

in the model. 

 To remove parameters, click on the name of the parameter (use control+click or shift+click to 

select multiple parameters), and click the Delete button. Note that deleting a parameter 

clears out the Parameter Review object. Clearing the results is intentional, as the coefficients 

and diagnostics on the parameters no longer apply without the removed parameter. Running 

Diagnostics returns parameters and diagnostics on the updated model. 

Note that any other change to the model (e.g., enabling/disabling the intercept or adding 

parameters) also clears out this table, to ensure consistency between the model specified 

and that presented in Arius. 

 Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL |MODEL SUMMARY area of the Navigation 

Pane. 

 In addition to the Parameter Review object, you can also review the Model Fit 

Diagnostics.  This table displays the statistical measures of fit for the model as a whole 

(versus the parameter specific measures discussed above). 

 Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | MODEL DIAGNOSTICS area of the 

Navigation Pane.  

 Additional diagnostics for the parameterized model include: 

 Diagnostic Triangles: 

 Fitted Incremental Paid Loss Triangles – These show the mean result of the 

calibrated model for each cell of the triangle. 

 Actual v. Expected Triangle - the heat maps on this object are useful for 

indicating poor fit. The goal is a distribution of colors that is random across the 

triangle. Clumps of one color indicate a poor fit and may indicate the need for 

additional terms. 

 Standardized Pearson Residuals/Standardized Deviance Residuals – These 

objects provide a way to see the values underlying the residual plots used for 

model parameterization. 

 Q-Q Plot for Normality – This object is used to verify that your residuals are 

normally distributed, to verify the validity of the parameters and assumptions in 

your model.   

 Box Whisker Plot of Residuals – This object can identify potential outliers that may 

skew/bias results if not given reduced weight or excluded from the 

parameterization 
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12. Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation 

Pane.  

 Open Weights object. To remove an outlier, you can assign a weight of 0 in the 

corresponding cell. You can also use this weights array to attach more importance to 

particular cells if warranted. For more information, see the section below for Reducing Data 

Point Influence with Weights & Outliers. 

 After modifying parameters or outliers, you need to use the Run Diagnostics icon again to 

recalculate each of the diagnostic statistics. 

 Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | TAIL PARAMETERIZATION area of the 

Navigation Pane:  

 When simulating, the parameterized model applies to the lower right corner of the loss 

triangle. In many instances, the losses may not be fully paid out by this point. If this is 

the case, a tail factor can be calibrated based on the parameterized model, which is 

applied when running the cash flows. For more information, see the section below for 

Calibrating a Tail Factor Model. 

13. Once a model (and tail factor model, if applicable) is parameterized, you can run the simulations 

for this segment using the Run Simulations icon and selecting the Run Simulations for 

SegmentAbbr option from the Home ribbon. 

14. Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | RESULTS area of the Navigation Pane: 

 The simulation process involves resampling the GLM parameters specified, creating a 

squared triangle, then applying the tail factor calculation (if applicable) for the selected 

number of iterations. The output generated by the Arius GLM Simulations is formatted 

identically to the output from the other simulation models. Please refer to the Stochastic 

User Guide (Chapter 5: Summary Output) found under HELP | USER DOCUMENTATION for more 

information.  

 Iteratively adjust model parameters or options and re-run the diagnostics or simulations until 

you are satisfied with the model fit and simulation performance. 

15. Finally, repeat steps #5 to 14 for each line of business in the Arius project. 
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ADVANCED PARAMETERIZATION OPTIONS 

Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation Pane. 

Index adjustment 

When assigning new parameters (step 9 above), you have the option to identify the type of parameter 

that you are adding to the periods selected on the residual plots. In addition to specifying the type, 

there are two additional options for each added parameter. 

For any Index type variables, you can specify an additive adjustment to the index (which applies prior 

to applying any transformations of the index). For example, if exposure period trend exists within your 

data within the 5th through 10th exposure period, assigning an Index type variable without adjustment 

to those six exposure periods would result in design matrix entries with values between 5 and 10. 

Applying a negative additive adjustment of 4 ensures that the first period of this trend has a design 

matrix entry of 1, rather than 5. 

For the GLM purposes, the exposure period numbers start at 1 for the first exposure period and 

increment by 1 for each additional row, irrespective of the length of the calendar periods. Similarly, the 

development period numbers start at 1 for the first development period and incremental by 1 for each 

additional column, irrespective of the length of development periods. The calendar period numbers 

start at 1 in the upper left-hand corner and progress incrementally through subsequent diagonals.  For 

symmetric triangles (where the length of development periods and exposure periods is the same), the 

calendar period is equal to the development period number less the exposure period number + 1.  

For asymmetrical triangles, Arius accounts for the number of development periods by adjusting the 

first calendar period for each row. In the picture here (an example of an AxQ triangle), for a given cell, 

the exposure period is the row number, the development period is the column number, and the 

calendar period is the black value in the cell.  

 

Apply parameters to subsets of selections 

For parameters added from the exposure period plot, you can set which development periods to which 

the parameter should apply. The reverse functionality exists for parameters added from the 

development period plot. These options allow for parameters to only apply to a subset of the 

exposure/development periods, rather than the entire highlighted column.  

These parameters can account for phenomena in specific exposure/development period combinations, 

such as shifts in the book of business, data availability, and payment pattern changes. This functionality 

also allows the specification of a parameter for a single cell. 

Assigning a parameter to a single cell is an alternative to excluding outliers from parameterization. 

Parameters applied to the row, column, or diagonal containing the cell still apply, but with an 

additional parameter that prevents the outlier from distorting them. For a basic one-dimensional 

example, consider the table below: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5 6 7 8 9 10 11 12 13 14 15 16

3 9 10 11 12 13 14 15 16

4 13 14 15 16
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PERIOD 1 2 3 4 5 6 7 8 9 10 

Incremental 10 20 30 40 75 85 70 80 90 100 

 

There is an underlying linear trend, where the incremental payment increases by 10 for each additional 

period, excluding the 5th and 6th. If we were to parameterize a simple linear regression model without 

accounting for this outlier, we would arrive at an intercept of 5 and a slope of 10. However, if we add a 

constant parameter for the 5th period, this results in a zero intercept, a slope of 10, and a coefficient of 

25 for the period parameter, which is more reflective of the actual pattern. The slope of the line 

accounts for the normal growth, and the additional parameter estimates the spike. 

REDUCING DATA POINT INFLUENCE WITH WEIGHTS & OUTLIERS 

Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | PARAMETERIZATION area of the Navigation Pane.  

When reviewing diagnostics to improve your model fit (step 11 above), you have the option to specify, 

on a cell-by-cell basis, the amount of weight the cell should have in the parameterization of the model. 

In the Weights triangle, you can adjust this (the default is a level weight for each cell). This triangle 

allows the user to assign more weight to the most recent observations (though the selection of 

parameters could nullify the impact of these weights), or to give less influence to points exhibiting 

large residuals (instead of excluding the points or assigning individual parameters to the cells). 

The residual diagnostics, QQ-Plots, or Box-Whisker Plots may identify observations with very large 

residuals. These may be referred to as outliers and can potentially influence the GLM model by shifting 

the fitted values away from the bulk of the observed incremental paid losses towards the outlier 

values. You can remove points from the model by assigning them zero weight.  

Any excluded point does not appear on the three residual plot (and other diagnostic) objects. Any 

point given non-zero weight appears on these plots. As the weights don’t impact the visualization of 

the point itself, you should review the weights array alongside the parameterization objects. 

CALIBRATING A TAIL FACTOR MODEL 

Navigate to the STOCHASTIC | GENERALIZED LINEAR MODEL | TAIL PARAMETERIZATION area of the Navigation 

Pane.  

The Arius GLM allows the parameterization of a model to square the triangle, effectively filling in the 

lower right-hand corner of the paid loss triangle. If development for the segment under review 

continues beyond the number of development periods in the Arius project, a separate tail factor model 

can be calibrated based on the results of the parameterized non-tail model. 

The Arius GLM utilizes an exponential decay tail factor model, with an option for the user to provide an 

array of adjustment factors to tweak the results of the selected exponential decay model manually. 

The tail model requires the following inputs: 

 Number of Periods of Extrapolation: The number of periods of development expected beyond 

the triangle (minimum 2) 

 Number of adjustment nodes: The number of points in the piecewise linear adjustment to apply 

to the triangle (minimum 2) 

 Periods to use in the tail: Specified using checkboxes below the first table, this identifies the 

development periods to use for the exponential decay model, before the piecewise linear 

adjustment (minimum 2) 
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 Matrix of adjustment nodes: The X and Y values for a piecewise linear adjustment index that are 

applied to the exponential decay to arrive at the final tail pattern 

If you’ve parameterized a model, the Deterministic Completed Triangle section of the tail factor model 

should be populated.  If not, running diagnostics with your specified parameters, updates, and 

refreshes this box. This area provides the results of the GLM for the squared triangle. The checkboxes 

allow you to specify which periods calibrate the tail factor model. The tail model requires two or more 

columns to be selected. 

When your columns are specified, running diagnostics updates the Tail Model Diagnostics box in the 

center of this object. The tail factor diagnostics are: 

 the exponential decay rate indicated by the checked columns; 

 the tail development factor implied by the exponential decay rate and the number of periods of 

tail extrapolation; and 

 the goodness of fit of the exponential decay curve to the selected columns (measured by R-

Squared). 

The last two diagnostics depend on the values in the Piecewise Adjustment Factors section. The 

piecewise adjustment factor array allows you to tweak the exponential decay model to be as 

representative of your expectations of tail development as desired. The array takes inputs for pairs of 

Tail Periods and Adjustment Points, which derive a piecewise linear pattern of adjustment factors. The 

adjustment factors are multiplied by the implied exponential decay to arrive at an adjusted exponential 

decay tail factor.  

When the piecewise adjustment factors are equal to 100%, the model uses the unadjusted exponential 

decay rate. Similarly, when the adjustment factors are 0%, there are no tail losses in that period. 

For example, consider a project in which you wish for there to be five periods of extrapolated 

development beyond the triangle.  First, set the number of periods of extrapolation to 5, select the 

columns to use in the fit, and run diagnostics. For the first pass, the diagnostics should look something 

like this. 

 

Because we haven’t changed any of the piecewise adjustment nodes, the adjusted and unadjusted 

implied tail factors are the same.  

For this example, the first tail period losses would be equal to the last development period incremental 

paid loss times 76.44%. The second tail periods losses would be equal to the last development periods 

loss times 76.44%^2, and so on. 

These unadjusted figures can be modified using the piecewise adjustment nodes. As a simple example, 

assume we had an adjustment node for each tail period (in other words, five tail periods and five 

adjustment nodes). For a simple example, leaving the adjustment points all at 100% gives us the 

following tail decay pattern: 
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. 

Here the adjusted decay pattern is equal to the product of the unadjusted decay and the adjustment 

factor. Adjustment factors can be set independently for each tail period, or for specific tail periods, in 

which case linear interpolation derives the adjustment factor for interim periods. In the example 

below, the adjustment nodes are: 

. 

The corresponding adjustment factors and decay patterns are: 

 

In this case, the 5th tail period would not have any losses (due to the multiplication by zero). 

The tail factor is only applicable when running simulations and does not have any impact on the 

diagnostics or non-tail parameterization object. 

EXTRAPOLATING TO FUTURE CALENDAR PERIODS 

One of the benefits of the Arius GLM over the other stochastic models is the ability to directly 

parameterize a variable that operates along the calendar period direction (i.e., the diagonal in a typical 

triangle view). While the residual plots show representations of all exposure periods and all 

development periods, there are calendar periods within your analysis not represented in these plots. 

These periods represent the lower-right component of the triangle. 

The parameter associated with the most recent calendar period of the historical data (i.e., the last 

column of the calendar period residual plot) applies to future calendar periods. Any parameter 

applicable to this column is extended for enough calendar periods to complete the rectangle. The 

inherent assumption is that any impact that is present within the last diagonal continues similarly 

through the end of the triangle. 

For example, consider a 5x5 triangle with an intercept term and a single parameter, calibrated by 

selecting all five columns of the calendar period residual plot, and adding a calendar period trend 

variable. (All numbers illustrative) 

Intercept: 10.000 Cal_Trend: -.5000 

Then, for each cell in the triangle (including the lower right forecast period), the expected value of the 

incremental paid losses can be calculated as exp⁡(10 − .5𝐶𝑃), where 𝐶𝑃 represents the calendar 

period of the cell.  

Tail Unadjusted Adjustment Adjusted

Period Decay Factor Decay

1 76.44% 100.00% 76.44%

2 58.43% 100.00% 58.43%

3 44.67% 100.00% 44.67%

4 34.15% 100.00% 34.15%

5 26.10% 100.00% 26.10%

Tail Unadjusted Adjustment Adjusted

Period Decay Factor Decay

1 76.44% 100.00% 76.44%

2 58.43% 75.00% 43.83%

3 44.67% 50.00% 22.33%

4 34.15% 25.00% 8.54%

5 26.10% 0.00% 0.00%
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The table below shows the triangle (with forecast) for the above parameterization. Note that while the 

historical experience only included five calendar periods, the resulting triangle uses calendar periods 6 

through 9 to complete the lower-right portion of the triangle. 

 
1 2 3 4 5 

1 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡1) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡2) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡3) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡4) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡5) 

2 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡2) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡3) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡4) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡5) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡6) 

3 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡3) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡4) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡5) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡6) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡7) 

4 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡4) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡5) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡6) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡7) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡8) 

5 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡5) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡6) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡7) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡8) 𝑒𝑥𝑝(10⁡ − ⁡ .5⁡ ∗ ⁡9) 

 

REVIEWING THE DESIGN MATRIX 

While the design matrix for the parameterized model is not viewable in the Arius desktop software, it 

can be extracted to a CSV file and analyzed in other software of your choosing. The matrix can aid in 

ensuring that the terms of the model are as expected. To extract the design matrix (as well as the 

parameter covariance matrix), click on Model Options on the ribbon and select GLM Diagnostics from 

the Save Results to File? dropdown.  

With this option selected, Run Diagnostics, which creates a CSV file in the 

C:\Users\YourUserName\Documents\Milliman\Arius\Sim_Results folder, with the naming convention 

ProjectName_SegmentAbbreviation__PaidGLM_Diagnostics.csv. This file contains the design matrix.   

The observations in the CSV file go down the triangle column by column. In other words, for a 10x10 

triangle, the first ten rows of the design matrix represent the first development period for the ten 

exposure periods. The next nine rows represent the second development period for the first nine 

development periods, and so on. 

Below the design matrix is a P by P square, which is the covariance matrix of the P parameters 

specified by the model, provided for informational purposes. 

Note that the CSV generates the design matrix as specified by the selected parameters, not by the 

derived parameters.  For example, if you add two identical parameters, only one of them has 

coefficients returned, but both appear in the design matrix. This can be easily identified in the 

covariance matrix, which has rows & columns entirely of zeros for parameters that were specified but 

not utilized in the model.   
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2. GLM Case Studies 

INTRODUCTION 

The following case studies are included with the Arius 2020b installation, in 

C:\Users\username\Documents\Milliman\Arius\DemoFiles\GLM_Case_Studies.apj.   

These case studies serve as an introduction to potential applications of the GLM framework. The model 

parameterized within each case study is not necessarily the optimal model for that dataset, nor are the 

models applicable as out of the box solutions to other datasets. 

REPLICATING THE ODP BOOTSTRAP MODEL 

Several case studies highlight enhancements to the ODP Bootstrap model framework within the GLM 

context.  This section walks you through reproducing the ODP Bootstrap (Paid Chain Ladder) 

methodology within the GLM. 

The Overdispersed-Poisson (ODP) Bootstrap Paid Chain Ladder model is a particular case of a GLM with 

a Level/Constant parameter for each exposure period and each development period (technically, all 

but one exposure period, which serves as the base period).  Therefore, replicating the ODP Paid Chain 

Ladder within the Arius GLM is very straightforward: 

 Quick-add parameters on the exposure period plot, 

 Quick-add parameters on the development period plot, 

 Remove the first development year parameter on the parameter review table; and 

 Remove the intercept parameter, if applied. 

 Run Diagnostics. 

These steps replicate the ODP Paid Chain Ladder model (in terms of model specification).  Simulated 

results and degree of variability differ slightly, as the GLM model relies on parameter resampling for 

simulation, while the ODP models utilize residual resampling. 
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CS1 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY MODELING CATEGORICAL 

VARIABLES AS CONTINUOUS (PARAMETER REDUCTION) 

The typical ODP Bootstrap model utilizes a large number of parameters, one for each exposure period 

and one for each development period (less one). For a 10x10 triangle, this amounts to 19 parameters 

for the 55 data points. In some situations, the parameters implicit in the ODP Bootstrap model are not 

statistically significant, which implies a better model can be developed simply by excluding the 

parameter. In other situations, simple continuous functions exist that closely approximate the 

parameters, which enables parameter reduction. 

Data: 

 

 

Analysis: 

To get insight as to the value of the underlying parameters of 

the ODP bootstrap model, we first need to reproduce it in the 

Arius GLM framework, as described above. 

Now, running diagnostics provides the parameters associated 

with the replicated ODP Bootstrap model, shown to the right.  

Users interested in reducing parameters in this model may take 

the natural next step of plotting the coefficients, to see if any 

can be bucketed, or otherwise reduced. Plotting the exposure 

period parameters (in external software) shows that the ten 

individual parameters are well represented by a parabola, 

which means that we can likely replace these ten parameters 

with three (a quadratic equation). 
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To make this adjustment, first, remove all ten exposure 

period parameters on the Parameter Review table. 

Next, navigate to the Exposure Period Residual Plot. 

Highlight all of the columns of the plot, and click New 

Parameter. The first new parameter’s coefficient applies 

to the square of the column number. We’ll name this 

parameter “SQParam” to inform future users as to the 

intent of this parameter. This parameter is of type Index 

Squared, which means that the values in the design 

matrix are equal to the exposure period number 

squared. No index adjustment is necessary, and this 

parameter should apply to all development periods. 

Next, we’ll repeat this process, but add an Index parameter, named “Param.” This parameter is similar 

to the “SQParam” just added. However, it is a parameter of type Index, which means the values in the 

design matrix are equal to the exposure period number. Again, no index or range adjustments are 

necessary.  

The final component of the parabola is the intercept term, we repeat the process one more time, 

adding a parameter of type Level/Constant, which means the values in the design matrix are equal to 

one. Adding this parameter is identical to navigating to GLM Assumptions and checking the Use 

Intercept button. Whichever your approach, click Run Diagnostics. Reviewing the Parameter Review 

table shows the coefficients of these new parameters: 

 

This parameterization effectively replaces the unique intercept parameters for each exposure period 

with a quadratic equation: 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝐹𝑎𝑐𝑡𝑜𝑟 = −0.020𝑘2 + 0.199𝑘 + 8.249 

Comparing the Model Fit Diagnostics before and after this adjustment below, we see an improvement 

in model fit (based on AIC, BIC, and GCV metrics), using fewer parameters, making this parabolic 

parameter replacement a change worth incorporating into the model.   
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BEFORE PARAMETER REDUCTION AFTER PARAMETER REDUCTION 

  

 

Parameter reduction can also similarly be accomplished by expressing predictor variables as linear and 

exponential (using the natural log adjustment) functions in a similar manner to that described above. 

CS2 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY INCORPORATING CALENDAR 

YEAR EFFECTS (SUDDEN CHANGE) 

The ODP Bootstrap model sets parameters for each Development Period and each Exposure Period.  

However, there may be instances in which changes in claims payment (either amount, timing, or both) 

do not follow either of these temporal directions, but instead follow the calendar year direction, 

effectively creating a dependency between exposure period and development period. 

Attempting to parameterize and use an ODP model that does not account for these types of changes 

can introduce omitted variable bias in your reserve or distribution estimate.  This example highlights a 

situation where there is a sudden change in the paid triangle that persists for multiple exposure 

periods. 

 

Analysis: 

As with the first case study, we reproduce the ODP Bootstrap parameters in the GLM framework. 
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On the surface, this appears to be a reasonable 

model.  However, investigation of the residual plots 

and the Actual to Expected triangles (either for the 

ODP module or its recreation within GLM) reveals 

that we’re potentially missing something with this 

model.  Looking at the calendar year plot (to the 

right) reveals some concerns: 

There is some trend in the residuals for the first few 

exposure periods, which then repeats itself five 

periods into the analysis.  This plot is a visible sign of 

some calendar year activity.  The actual to expected 

triangle can provide some additional insight.  The 

ODP model actual to expected shows a clear trend upwards for the first 5 diagonals, then a sudden 

drop reversion, followed by a subsequent upward trend.  Perhaps a new system was implemented 

after 5 calendar years to attempt to correct for the upward trend. 

 

Regardless of the cause, we account for this by implementing a regime variable.  This variable serves as 

a flag to identify the regime in which each cell is located.  To do this, we use the payment period plot to 

identify the periods in which the new regime exists.  In the above plot, this refers to calendar periods 

2005 and subsequent1.  On the payment period plot, we highlight these five columns and add a new 

Level/Constant parameter.  Here, we call this “Regime2.”   

There is no need to add a parameter for the first regime.  

The logic is that the ODP model applies to this entire 

triangle after we apply an adjustment factor to the last five 

periods to account for the calendar period affects.  If we 

were to add a level/constant parameter for the first five 

periods, the results of the model would be similar, with 

one additional parameter, indicative of a weaker model. 

Reviewing the calendar year residual plot, we see a more 

favorable dispersion of residuals. 

 

1 Recall that any parameter applying to the last column of the payment period plot will be assumed to continue for the remainder of the 
development periods in the triangle. 
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A review of the model fit diagnostics before and after the introduction of this variable shows an 

improvement in fit, despite the additional parameter. 

BEFORE REGIME VARIABLE AFTER REGIME VARIABLE 

  

CS3 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY INCORPORATING CALENDAR 

YEAR EFFECTS (GRADUAL CHANGE) 

The previous example introduced a treatment of calendar year impacts with a binary application, 

either a cell was adjusted (in the new regime), or it wasn’t.  However, in many situations, the calendar 

year impact is not an all or nothing venture.   

For example, new claims systems can take many calendar periods to propagate to the entire triangle. 

While including a binary flag for these types of system changes is better than ignoring them, they may 

not be the best approach for accounting for them. 

This case study showcases a loss triangle with a gradual slowdown in incremental paid losses, 

introduced in the 5th calendar period, and continuing through the end of the triangle. 

Data: 

 

Analysis: 

After replicating the ODP bootstrap model framework, the calendar year residual plot and the actual to 

expected triangle showcase a similar phenomenon to the previous case study: 
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In this case, after payment year 2015, we see a continual decrease in the actual versus expected, after 

an initial ramp-up from payment year 2011 through 2015. First, we’ll add a “Regime2” variable.  We 

add this based on the data observed, but parameters could also be added based on outside 

information.  Say the claims department implemented a payment slowdown initiative starting in 2016.  

If this was the case, it may make sense to introduce parameters a priori, and remove them if not 

statistically significant.   

First, we’ll introduce this parameter as a Level/Constant parameter, as we did in the previous regime 

change case study: 
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As shown in the above plot and table, this new parameter 

did not materially impact the payment period residual plot, 

and the Actual vs. Expected is virtually unchanged as well.  

Reviewing the Parameter Review Table, we notice that the 

constant regime change parameter is not statistically 

significant.  So, we delete this parameter and account for the 

calendar year impact in another way. 

Rather than having a 1/0 flag (in the design matrix) for the 

updated regime, it may make sense for the first period of the 

new regime would receive a 1, the second, a 2, continuing 

through the highlighted periods.  Solving for the parameter 

in this situation would mimic the introduction of a regime 

over some time.   

We highlight the 6th through the 10th.  Click Add Parameter.  

Here, we name the parameter Regime2IP and select Index.  

At this point, we could click OK.  However, this would introduce the parameter Regime2IP starting at 

calendar period 6, with a factor of 6 x coefficient (in other words, design matrix entries for this 

parameter would start at 6 in the appropriate period).  To adjust this to reflect the first period of the 

new regime, we turn on the negative adjustment and shift by five periods (to start at 1): 

(Note that the Index Squared and LN(Index) options allow further manipulation of the design matrix 

entries, either squaring the adjusted index value or taking the natural log, respectively) 

Running diagnostics gives us our adjusted model parameters.  Reviewing the calendar year plot and 

AvE once more, we see a much better fit (though as noted earlier, not likely an optimal model for this 

dataset): 

 

Finally, we review the model fit diagnostics, which indicate a better fit with this updated model, 

despite the increase in the number of parameters 
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BEFORE REGIME VARIABLE AFTER REGIME VARIABLE 

  

 

CS4 - ENHANCING YOUR ODP BOOTSTRAP MODEL BY ACCOUNTING FOR “SHOCK” 

CLAIMS/OUTLIERS 

Within the ODP Bootstrap model, significant “shock” losses can be excluded from the model 

parameterization by excluding the cell in which the loss occurs.  However, this is not always the ideal 

treatment of these losses, and care must be taken to understand the ramifications of completely 

excluding a data point from model calibration. 

The Arius GLM tool offers two different approaches to handling these types of losses.  The first 

approach is similar to the ODP approach, merely excluding the point from model calibration.  The 

second is unique to the Arius GLM and can provide additional flexibility into your stochastic models. 

Data: 

 

Analysis: 

Notice the substantial payment in the 84th development month of Accident Year 2013. This point is an 

outlier.  In a deterministic model, it is highly unlikely that you would include the loss development 
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factor implied by this period in your statistics.  Within the ODP Bootstrap model, you can attempt to 

adjust the model for this using outliers.  The GLM model allows for additional functionality. 

As with previous case studies, we’ll start by replicating the ODP Bootstrap model.  Next, we use the 

Weights object to assign no weight to this significant outlier point (2002, 84 months of development).  

This approach is similar to assigning the point as an outlier in the ODP model (see the table at the end 

of this section) 

An alternative approach would be to allow the attritional losses for this data point to be allowed to 

influence the model separately than the shock claim.  By assigning a parameter unique to the cell 

containing this large payment, the Arius GLM can accommodate this. 

First, return each point to equal weights in the Weights object.  Then, in the development year plot, 

highlight the 84th month of development, and click New Parameter. This parameter is Level/Constant, 

named “BulkLoss.”  However, we don’t want to apply this parameter to the entire period. Use the 

Specify Exposure Periods feature to limit this to the third exposure period (note, the same parameter 

can be specified from the Exposure Period plot, where you’d identify specific development periods): 

Now, for that cell of the triangle, the model projects 

incurred losses as a function of the exposure date 

parameter, the development age parameter, and a “bulk 

loss” parameter.   

Running diagnostics here shows a similar model to the zero 

weight model, as one would reasonably expect.  This “Bulk 

Loss” adjustment is extensible to any contiguous 

combinations of exposure and development periods, making 

it a better option if these “bulk” payments persist for 

multiple periods. 

While the table shows the addition of the bulk weight parameter is not necessarily a better model than 

the zero weight situation, it does provide additional value, specifically about the cell that contained the 

outlier. 

In the Equal-Weight to All Points scenario, the incremental paid losses for the cell in question is 

predicted by an accident year and exposure period parameter: 

exp(𝑎3 + 𝑏7) = exp(8.664 − 5.126) = 1,676 

In the zero weight scenario, this projection is: 

exp(𝑎3 + 𝑏7) = exp(8.425 − 3.058) = 214 

Finally, in the “BulkLoss” scenario, we have: 

exp(𝑎3 + 𝑏7 + 𝐵𝑢𝑙𝑘𝐿𝑜𝑠𝑠) = exp(8.425 − 3.058 + 3.171) = 5,104 

Of course, because we’re specifying this parameter specifically on one point, this accurately replicates 

the empirical paid loss triangle.  However, it provides additional insight, using the first two parameters.  

Because these parameters are calibrated on the entire row (or column) of the triangle, they provide an 

estimate for the cell, ignoring the impact of the bulk loss.  This estimate is equal to the value for the 

cell in the zero-weight scenario. 

Here, the “BulkLoss” scenario can be split into attritional and large losses: 

exp(𝑎3 + 𝑏7) + exp⁡(𝐵𝑢𝑙𝑘𝐿𝑜𝑠𝑠) = exp(8.425 − 3.058) + exp⁡(3.171) = 214 + 4,890 = ⁡5,104 
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The 4,890 adjustment for the substantial loss can be compared to actual claim records. 

EQUAL WEIGHT TO ALL POINTS ZERO WEIGHT TO OUTLIER BULKLOSS PARAMETER 

   

 

CS5 - REPRODUCING TAYLOR CHAPTER 7 WITH THE ARIUS GLM 

Within this case study, we use the Arius software to reproduce the Generalized Linear Model found in 

the CAS Monograph #3--Stochastic Loss Reserving Using Generalized Linear Models by Taylor & 

McGuire2 (ultimately, we reproduce formula 7-10 within the case study3).  While the diagnostics 

available within Arius are not identical to those found in the Taylor monograph, there is enough insight 

available to walk through this example from data to results. 

Data: 

The data used for this case study is the same as that found in Taylor. The triangle has been obtained 

from the database of Meyers and Shi4 (2011).  The triangle represents workers’ compensation data 

from the New Jersey Manufacturers Group.  The exposure periods in the case study do not match 

those from the database. 

 

2 Stochastic Loss Reserving Using Generalized Linear Models, Greg Taylor and Gráinne McGuire, 2016 
https://www.casact.org/pubs/monographs/papers/03-Taylor.pdf  

3 The WC segment of the Arius_Stochastic_Sample.apj file reproduces Taylor formula 7-14 (Table 7-5). 

4 Meyers, G. G., and P. Shi. 2011. The Retrospective Testing of Stochastic Loss Reserve Models. Casualty Actuarial Society E-Forum, Summer 
2011. http://www.casact.org/ pubs/forum/11sumforum/Meyers-Shi.pdf. 

https://www.casact.org/pubs/monographs/papers/03-Taylor.pdf
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Analysis: 

Taylor’s Chapter 7 builds on what he calls the Cross 

Classified model, with a parameter for each accident 

period and each exposure period.  The Cross Classified 

model is effectively the ODP bootstrap model.  To 

reproduce this table, we first Run Diagnostics with an 

intercept only model to activate the residual plots, then 

Quick Add parameters on both the Exposure Period and 

Development Period plots.   

To reproduce this exactly, we elect to alias the first 

development period parameter, by deleting the “b1” 

parameter from the Parameter Review table. If we did 

not make this selection, results would be similar, but 

Arius would select which parameter to alias.  In the 

interest of replication, we make this determination in 

advance. 

Next, run diagnostics.  After the run is completed, the 

GLM Parameter Review table exactly matches Table 5-1 

in the Taylor monograph (see screenshot to the right). 

Taylor’s next step is to plot the exposure period parameters (those prefixed with an “a” against the 

exposure period.  As with our first case study above (Parameter Reduction), these exposure period 

parameters can be approximated by a quadratic curve. 

We make the same replacement as we did in the first case study. First, remove all ten exposure period 

parameters on the Parameter Review table.  Next, navigate to the Exposure Period Residual Plot.  

Highlight all of the columns of the plot, and click New Parameter.  The first new parameter’s 

coefficient is applied to the square of the column number.  We’ll name this parameter “SqTerm” to 

inform future users as to the intent of this parameter.  The parameter is of type Index Squared, which 

means that the values in the design matrix are equal to the exposure period number squared.  No 

index adjustment is necessary, and this parameter should apply to all development periods. 

Next, we’ll repeat this process, but add an Index parameter, named “LinearTerm.”  This parameter is 

identical to the “SqTerm” just added, but with the parameter type Index, which means the values in 

the design matrix is equal to the exposure period number.  Again, no index or range adjustments are 

necessary.  
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Finally, the Taylor paper forgoes the inclusion of an intercept term on this quadratic, electing instead 

to restore “b1” as a free parameter (remember we had aliased this parameter above).  We do this by 

clicking the Quick Add button on the development period residual plot. 

Then, click Run Diagnostics.  Reviewing the Parameter Review table shows the coefficients of these 

new parameters.  The model represented by Taylor’s formula 7-2 has coefficients, as seen in the 

screenshot to the left.  

The next enhancement Taylor makes to the model is to apply similar parameter reduction techniques 

to the development year parameters. 

Taylor notes that a linear spline (with a knot at 7.5) well represents these parameters.  The R^2 value 

of a linear fit to the first seven parameters is 99.4%, and the R^2 of a linear fit to the last three 

parameters is 99.9%.  Fitting a line to all ten parameters (removing the knot) yields an R^2 of 97.7%.  

To reproduce Taylor, we replicate the spline, which is defined by two parameters: 

𝑏𝑥 ≅ {
𝑆𝑝𝑙𝑖𝑛𝑒𝐴(𝑥 − 1)⁡for 𝑥 ≤ 7.5

𝑆𝑝𝑙𝑖𝑛𝑒𝐵(𝑥 − 7.5)⁡for 𝑥 > 7.5
 

Building this spline into the Arius GLM requires two development year parameters.  The first applies to 

the first seven development periods, and the second applies to the remaining three.  As in Taylor, we 

parameterize the second spline as being an adjustment to the first. Formulaically, this is: 

𝑏𝑥 ≅ {
𝑆𝑝𝑙𝑖𝑛𝑒𝐴(𝑥 − 1)⁡for 𝑎𝑙𝑙⁡𝑋

𝑆𝑝𝑙𝑖𝑛𝑒𝐴(𝑥 − 1) + ⁡𝑆𝑝𝑙𝑖𝑛𝑒𝐵(𝑥 − 7.5)⁡for 𝑥 > 7.5
 

To parameterize the first, highlight all ten columns of the development period plot, and click New 

Parameter.  This new parameter (Spline A) is an index parameter, where the first highlighted column 

receives an entry of 1 in the design matrix, with each subsequent column increasing by 1.  However, to 

force this parameter to start at zero (for the first column), we perform a negative index adjustment of 

size 1.  

For Spline B, we perform a similar mechanic, first highlighting the last three columns of the 

development period plot, and adding a new index parameter with a negative index adjustment of size 

7.5.   

 

Next, Taylor introduces the intercept term at this point.  Navigate to the GLM Model Assumptions 

window and check the Use Intercept box. Taylor also includes a unit regressor (in development period 

2) in the model. In Arius, this can be done by adding a parameter to development period 2 by 

highlighting that column of the development period plot, clicking Add New, and naming a 

level/constant parameter. 
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Lastly, we delete the individual development year parameters from the Parameter Review table and 

Run Diagnostics.  

We now have a model that replicates Taylor’s Formula 7-10, and the parameters within Table 7-3: 
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3. Frequently Asked Questions 

Why do some of my specified parameters have zero coefficients and blank goodness 

of fit measures?  

This situation is caused by duplication or redundancies in the parameters. The Arius GLM 

performs automatic aliasing using QR factorization with the Householder transform to determine 

how many independent columns there are in the design matrix and then fits that many 

parameters.  

Why do I need two-tail periods and adjustment nodes for my tail factor model?  

The piecewise adjustment fit requires two or more points for proper specification. For a one-

period tail model, set the number of periods of extrapolation to two and set the second 

adjustment node to zero. A tail set in this manner results in one (non-zero) period of extrapolated 

results beyond your triangle. 

Why did I receive an error message stating “Iteration limit is reached. The model did 

not converge. The validity of the model fit is questionable”? 

The flexibility of the Arius GLM introduces the possibility of developing a model that does not 

converge within the number of permutations performed by the system.  This can happen in the 

rare case when there is a parameter assigned to a range of cells all containing an incremental paid 

loss of 0.  When you receive this error, your model requires simplification. Ensure that all specified 

parameters apply to ranges of cells containing at least one non-zero incremental paid loss. 

What happens when I modify structure (e.g., roll-forwards, compression)?  

As of Arius 2020b, the GLM model is cleared whenever the underlying data structure of the model 

is changed. 

Can I weight the GLM with existing models? Can I weight multiple GLMs together?  

While the GLM model is parameterized independently of the other stochastic models, and users 

are restricted to a single GLM in a given segment (at a time), these tasks can both be 

accomplished using the Arius Stochastic Compilation Module. Results from one (or more) GLMs 

can be saved to a CSV file using the All Incrementals, by Iteration option, which generates a file 

formatted for use in the compilation module. 

How does the Arius GLM account for a partial last diagonal or a shorter first 

development age?  

Arius automatically accounts for these situations when simulating. However, it does not account 

for these when parameterizing.  Arius requires you to set a Level/Constant parameter that applies 

only to the last diagonal in the event of a partial last diagonal.  Arius does not require a separate 

parameter for a short first development age. However, not including one causes a shorter 

incremental payment period to be treated the same as the remainder of the triangle, so it is highly 

recommended. 

How does the Arius GLM account for the All Prior row?  

Arius does not distinguish between the all prior row and the remainder of the triangle within the 
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GLM. Therefore, care must be taken to ensure any all prior row does not adversely influence the 

model fit. The prior row can be accommodated by excluding the all-prior row (by assigning those 

points zero weight), or by specifying parameters unique to the all prior row. 

I assigned zero weight to points in my triangle; why do I still see residuals for that cell?  

Unlike the ODP model, where excluding a point results in no residual being displayed and 

calculated for an excluded cell, the GLM calculates a residual for each point in the triangle, as a 

function of the parameters specified. When excluding points, they are being excluded from the 

derivation of the parameters, and the parameters specified generates a predicted value for that 

cell. 

Can I use the GLM as a Deterministic Method?  

While the Arius GLM is only available to Arius Stochastic licensees, these users can utilize the GLM 

as an indication of ultimate loss for deterministic reserving. Simply calibrate your GLM as usual 

and copy the Ultimate Loss column from the Deterministic Calculations object into a User 

Defined Loss Method, and incorporate the GLM within your Comparison of Ultimate Loss reports. 

Why do empty triangle cells result in two empty residual/fitted cells within the GLM 

diagnostics?  

This situation is caused by the conversion of a cumulative loss triangle to an incremental loss 

triangle within the calculation engine. If a cumulative data point is empty, the subsequent 

populated cell is not assumed to represent an actual incremental paid loss value, which is what 

the GLM model is framed around. 

Why doesn’t my RSS, AIC, or BIC match the ODP model when replicating the 

parameterization?  

The two model families rely on different calculations for these components. The RSS in the ODP 

Bootstrap model is used to determine how well the residuals fit a normal distribution, not how 

well the model fits the data. Within the GLM, the RSS measures the fit to the data. 

The AIC/BIC differences are also due to this difference, the RSS used in the AIC/BIC calculations 

under the ODP model determines how well the residuals fit a normal distribution.  Again, the GLM 

AIC/BIC measures the fit to the data. 

Why do I see 1.0 or some negative value in my Fitted Incrementals triangle?  

If you see unrealistic values in your fitted incremental triangle (1’s or negative numbers), it is likely 

due to there being no parameter assigned to that cell of the triangle. Users should take care to 

ensure that each cell has at least one parameter applied to it, and reviewing the Fitted 

Incrementals object is a quick way to see if a parameter may be missing. 

How can I validate my model?  

In a triangular reserving model, it is impossible to perform out of sample testing because all of the 

data is used in model calibration. The Model Diagnostics object provides a summary of the 

model’s goodness of fit.  For those looking for a more traditional GLM validation tool, the 

Generalized Cross-Validation metric provides an approximation for leave-one-out K-fold cross-

validation. 
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